Python/neural_network/activation_functions/rectified_linear_unit.py
pre-commit-ci[bot] bc8df6de31
[pre-commit.ci] pre-commit autoupdate (#11322)
* [pre-commit.ci] pre-commit autoupdate

updates:
- [github.com/astral-sh/ruff-pre-commit: v0.2.2 → v0.3.2](https://github.com/astral-sh/ruff-pre-commit/compare/v0.2.2...v0.3.2)
- [github.com/pre-commit/mirrors-mypy: v1.8.0 → v1.9.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.8.0...v1.9.0)

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-03-13 07:52:41 +01:00

42 lines
1.1 KiB
Python

"""
This script demonstrates the implementation of the ReLU function.
It's a kind of activation function defined as the positive part of its argument in the
context of neural network.
The function takes a vector of K real numbers as input and then argmax(x, 0).
After through ReLU, the element of the vector always 0 or real number.
Script inspired from its corresponding Wikipedia article
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
"""
from __future__ import annotations
import numpy as np
def relu(vector: list[float]):
"""
Implements the relu function
Parameters:
vector (np.array,list,tuple): A numpy array of shape (1,n)
consisting of real values or a similar list,tuple
Returns:
relu_vec (np.array): The input numpy array, after applying
relu.
>>> vec = np.array([-1, 0, 5])
>>> relu(vec)
array([0, 0, 5])
"""
# compare two arrays and then return element-wise maxima.
return np.maximum(0, vector)
if __name__ == "__main__":
print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]