Python/machine_learning/gaussian_naive_bayes.py
Christian Clauss 5f4da5d616
isort --profile black . ()
* updating DIRECTORY.md

* isort --profile black .

* Black after

* updating DIRECTORY.md

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
2020-07-06 09:44:19 +02:00

45 lines
1.0 KiB
Python

# Gaussian Naive Bayes Example
from matplotlib import pyplot as plt
from sklearn.datasets import load_iris
from sklearn.metrics import plot_confusion_matrix
from sklearn.model_selection import train_test_split
from sklearn.naive_bayes import GaussianNB
def main():
"""
Gaussian Naive Bayes Example using sklearn function.
Iris type dataset is used to demonstrate algorithm.
"""
# Load Iris dataset
iris = load_iris()
# Split dataset into train and test data
X = iris["data"] # features
Y = iris["target"]
x_train, x_test, y_train, y_test = train_test_split(
X, Y, test_size=0.3, random_state=1
)
# Gaussian Naive Bayes
NB_model = GaussianNB()
NB_model.fit(x_train, y_train)
# Display Confusion Matrix
plot_confusion_matrix(
NB_model,
x_test,
y_test,
display_labels=iris["target_names"],
cmap="Blues",
normalize="true",
)
plt.title("Normalized Confusion Matrix - IRIS Dataset")
plt.show()
if __name__ == "__main__":
main()