mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-07 02:47:01 +00:00
bc8df6de31
* [pre-commit.ci] pre-commit autoupdate updates: - [github.com/astral-sh/ruff-pre-commit: v0.2.2 → v0.3.2](https://github.com/astral-sh/ruff-pre-commit/compare/v0.2.2...v0.3.2) - [github.com/pre-commit/mirrors-mypy: v1.8.0 → v1.9.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.8.0...v1.9.0) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
160 lines
4.9 KiB
Python
160 lines
4.9 KiB
Python
#!/usr/bin/python
|
|
|
|
# Logistic Regression from scratch
|
|
|
|
# In[62]:
|
|
|
|
# In[63]:
|
|
|
|
# importing all the required libraries
|
|
|
|
"""
|
|
Implementing logistic regression for classification problem
|
|
Helpful resources:
|
|
Coursera ML course
|
|
https://medium.com/@martinpella/logistic-regression-from-scratch-in-python-124c5636b8ac
|
|
"""
|
|
|
|
import numpy as np
|
|
from matplotlib import pyplot as plt
|
|
from sklearn import datasets
|
|
|
|
# get_ipython().run_line_magic('matplotlib', 'inline')
|
|
|
|
|
|
# In[67]:
|
|
|
|
# sigmoid function or logistic function is used as a hypothesis function in
|
|
# classification problems
|
|
|
|
|
|
def sigmoid_function(z: float | np.ndarray) -> float | np.ndarray:
|
|
"""
|
|
Also known as Logistic Function.
|
|
|
|
1
|
|
f(x) = -------
|
|
1 + e⁻ˣ
|
|
|
|
The sigmoid function approaches a value of 1 as its input 'x' becomes
|
|
increasing positive. Opposite for negative values.
|
|
|
|
Reference: https://en.wikipedia.org/wiki/Sigmoid_function
|
|
|
|
@param z: input to the function
|
|
@returns: returns value in the range 0 to 1
|
|
|
|
Examples:
|
|
>>> sigmoid_function(4)
|
|
0.9820137900379085
|
|
>>> sigmoid_function(np.array([-3, 3]))
|
|
array([0.04742587, 0.95257413])
|
|
>>> sigmoid_function(np.array([-3, 3, 1]))
|
|
array([0.04742587, 0.95257413, 0.73105858])
|
|
>>> sigmoid_function(np.array([-0.01, -2, -1.9]))
|
|
array([0.49750002, 0.11920292, 0.13010847])
|
|
>>> sigmoid_function(np.array([-1.3, 5.3, 12]))
|
|
array([0.21416502, 0.9950332 , 0.99999386])
|
|
>>> sigmoid_function(np.array([0.01, 0.02, 4.1]))
|
|
array([0.50249998, 0.50499983, 0.9836975 ])
|
|
>>> sigmoid_function(np.array([0.8]))
|
|
array([0.68997448])
|
|
"""
|
|
return 1 / (1 + np.exp(-z))
|
|
|
|
|
|
def cost_function(h: np.ndarray, y: np.ndarray) -> float:
|
|
"""
|
|
Cost function quantifies the error between predicted and expected values.
|
|
The cost function used in Logistic Regression is called Log Loss
|
|
or Cross Entropy Function.
|
|
|
|
J(θ) = (1/m) * Σ [ -y * log(hθ(x)) - (1 - y) * log(1 - hθ(x)) ]
|
|
|
|
Where:
|
|
- J(θ) is the cost that we want to minimize during training
|
|
- m is the number of training examples
|
|
- Σ represents the summation over all training examples
|
|
- y is the actual binary label (0 or 1) for a given example
|
|
- hθ(x) is the predicted probability that x belongs to the positive class
|
|
|
|
@param h: the output of sigmoid function. It is the estimated probability
|
|
that the input example 'x' belongs to the positive class
|
|
|
|
@param y: the actual binary label associated with input example 'x'
|
|
|
|
Examples:
|
|
>>> estimations = sigmoid_function(np.array([0.3, -4.3, 8.1]))
|
|
>>> cost_function(h=estimations,y=np.array([1, 0, 1]))
|
|
0.18937868932131605
|
|
>>> estimations = sigmoid_function(np.array([4, 3, 1]))
|
|
>>> cost_function(h=estimations,y=np.array([1, 0, 0]))
|
|
1.459999655669926
|
|
>>> estimations = sigmoid_function(np.array([4, -3, -1]))
|
|
>>> cost_function(h=estimations,y=np.array([1,0,0]))
|
|
0.1266663223365915
|
|
>>> estimations = sigmoid_function(0)
|
|
>>> cost_function(h=estimations,y=np.array([1]))
|
|
0.6931471805599453
|
|
|
|
References:
|
|
- https://en.wikipedia.org/wiki/Logistic_regression
|
|
"""
|
|
return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean()
|
|
|
|
|
|
def log_likelihood(x, y, weights):
|
|
scores = np.dot(x, weights)
|
|
return np.sum(y * scores - np.log(1 + np.exp(scores)))
|
|
|
|
|
|
# here alpha is the learning rate, X is the feature matrix,y is the target matrix
|
|
def logistic_reg(alpha, x, y, max_iterations=70000):
|
|
theta = np.zeros(x.shape[1])
|
|
|
|
for iterations in range(max_iterations):
|
|
z = np.dot(x, theta)
|
|
h = sigmoid_function(z)
|
|
gradient = np.dot(x.T, h - y) / y.size
|
|
theta = theta - alpha * gradient # updating the weights
|
|
z = np.dot(x, theta)
|
|
h = sigmoid_function(z)
|
|
j = cost_function(h, y)
|
|
if iterations % 100 == 0:
|
|
print(f"loss: {j} \t") # printing the loss after every 100 iterations
|
|
return theta
|
|
|
|
|
|
# In[68]:
|
|
|
|
if __name__ == "__main__":
|
|
import doctest
|
|
|
|
doctest.testmod()
|
|
|
|
iris = datasets.load_iris()
|
|
x = iris.data[:, :2]
|
|
y = (iris.target != 0) * 1
|
|
|
|
alpha = 0.1
|
|
theta = logistic_reg(alpha, x, y, max_iterations=70000)
|
|
print("theta: ", theta) # printing the theta i.e our weights vector
|
|
|
|
def predict_prob(x):
|
|
return sigmoid_function(
|
|
np.dot(x, theta)
|
|
) # predicting the value of probability from the logistic regression algorithm
|
|
|
|
plt.figure(figsize=(10, 6))
|
|
plt.scatter(x[y == 0][:, 0], x[y == 0][:, 1], color="b", label="0")
|
|
plt.scatter(x[y == 1][:, 0], x[y == 1][:, 1], color="r", label="1")
|
|
(x1_min, x1_max) = (x[:, 0].min(), x[:, 0].max())
|
|
(x2_min, x2_max) = (x[:, 1].min(), x[:, 1].max())
|
|
(xx1, xx2) = np.meshgrid(np.linspace(x1_min, x1_max), np.linspace(x2_min, x2_max))
|
|
grid = np.c_[xx1.ravel(), xx2.ravel()]
|
|
probs = predict_prob(grid).reshape(xx1.shape)
|
|
plt.contour(xx1, xx2, probs, [0.5], linewidths=1, colors="black")
|
|
|
|
plt.legend()
|
|
plt.show()
|