mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-07 02:47:01 +00:00
bc8df6de31
* [pre-commit.ci] pre-commit autoupdate updates: - [github.com/astral-sh/ruff-pre-commit: v0.2.2 → v0.3.2](https://github.com/astral-sh/ruff-pre-commit/compare/v0.2.2...v0.3.2) - [github.com/pre-commit/mirrors-mypy: v1.8.0 → v1.9.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.8.0...v1.9.0) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
63 lines
1.6 KiB
Python
63 lines
1.6 KiB
Python
"""
|
|
Reference: https://en.wikipedia.org/wiki/Gaussian_function
|
|
"""
|
|
|
|
from numpy import exp, pi, sqrt
|
|
|
|
|
|
def gaussian(x, mu: float = 0.0, sigma: float = 1.0) -> int:
|
|
"""
|
|
>>> gaussian(1)
|
|
0.24197072451914337
|
|
|
|
>>> gaussian(24)
|
|
3.342714441794458e-126
|
|
|
|
>>> gaussian(1, 4, 2)
|
|
0.06475879783294587
|
|
|
|
>>> gaussian(1, 5, 3)
|
|
0.05467002489199788
|
|
|
|
Supports NumPy Arrays
|
|
Use numpy.meshgrid with this to generate gaussian blur on images.
|
|
>>> import numpy as np
|
|
>>> x = np.arange(15)
|
|
>>> gaussian(x)
|
|
array([3.98942280e-01, 2.41970725e-01, 5.39909665e-02, 4.43184841e-03,
|
|
1.33830226e-04, 1.48671951e-06, 6.07588285e-09, 9.13472041e-12,
|
|
5.05227108e-15, 1.02797736e-18, 7.69459863e-23, 2.11881925e-27,
|
|
2.14638374e-32, 7.99882776e-38, 1.09660656e-43])
|
|
|
|
>>> gaussian(15)
|
|
5.530709549844416e-50
|
|
|
|
>>> gaussian([1,2, 'string'])
|
|
Traceback (most recent call last):
|
|
...
|
|
TypeError: unsupported operand type(s) for -: 'list' and 'float'
|
|
|
|
>>> gaussian('hello world')
|
|
Traceback (most recent call last):
|
|
...
|
|
TypeError: unsupported operand type(s) for -: 'str' and 'float'
|
|
|
|
>>> gaussian(10**234) # doctest: +IGNORE_EXCEPTION_DETAIL
|
|
Traceback (most recent call last):
|
|
...
|
|
OverflowError: (34, 'Result too large')
|
|
|
|
>>> gaussian(10**-326)
|
|
0.3989422804014327
|
|
|
|
>>> gaussian(2523, mu=234234, sigma=3425)
|
|
0.0
|
|
"""
|
|
return 1 / sqrt(2 * pi * sigma**2) * exp(-((x - mu) ** 2) / (2 * sigma**2))
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import doctest
|
|
|
|
doctest.testmod()
|