mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-23 18:53:43 +00:00
623 lines
20 KiB
Python
623 lines
20 KiB
Python
"""
|
|
Sequential minimal optimization (SMO) for support vector machines (SVM)
|
|
|
|
Sequential minimal optimization (SMO) is an algorithm for solving the quadratic
|
|
programming (QP) problem that arises during the training of SVMs. It was invented by
|
|
John Platt in 1998.
|
|
|
|
Input:
|
|
0: type: numpy.ndarray.
|
|
1: first column of ndarray must be tags of samples, must be 1 or -1.
|
|
2: rows of ndarray represent samples.
|
|
|
|
Usage:
|
|
Command:
|
|
python3 sequential_minimum_optimization.py
|
|
Code:
|
|
from sequential_minimum_optimization import SmoSVM, Kernel
|
|
|
|
kernel = Kernel(kernel='poly', degree=3., coef0=1., gamma=0.5)
|
|
init_alphas = np.zeros(train.shape[0])
|
|
SVM = SmoSVM(train=train, alpha_list=init_alphas, kernel_func=kernel, cost=0.4,
|
|
b=0.0, tolerance=0.001)
|
|
SVM.fit()
|
|
predict = SVM.predict(test_samples)
|
|
|
|
Reference:
|
|
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/smo-book.pdf
|
|
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-98-14.pdf
|
|
"""
|
|
|
|
import os
|
|
import sys
|
|
import urllib.request
|
|
|
|
import numpy as np
|
|
import pandas as pd
|
|
from matplotlib import pyplot as plt
|
|
from sklearn.datasets import make_blobs, make_circles
|
|
from sklearn.preprocessing import StandardScaler
|
|
|
|
CANCER_DATASET_URL = (
|
|
"https://archive.ics.uci.edu/ml/machine-learning-databases/"
|
|
"breast-cancer-wisconsin/wdbc.data"
|
|
)
|
|
|
|
|
|
class SmoSVM:
|
|
def __init__(
|
|
self,
|
|
train,
|
|
kernel_func,
|
|
alpha_list=None,
|
|
cost=0.4,
|
|
b=0.0,
|
|
tolerance=0.001,
|
|
auto_norm=True,
|
|
):
|
|
self._init = True
|
|
self._auto_norm = auto_norm
|
|
self._c = np.float64(cost)
|
|
self._b = np.float64(b)
|
|
self._tol = np.float64(tolerance) if tolerance > 0.0001 else np.float64(0.001)
|
|
|
|
self.tags = train[:, 0]
|
|
self.samples = self._norm(train[:, 1:]) if self._auto_norm else train[:, 1:]
|
|
self.alphas = alpha_list if alpha_list is not None else np.zeros(train.shape[0])
|
|
self.Kernel = kernel_func
|
|
|
|
self._eps = 0.001
|
|
self._all_samples = list(range(self.length))
|
|
self._K_matrix = self._calculate_k_matrix()
|
|
self._error = np.zeros(self.length)
|
|
self._unbound = []
|
|
|
|
self.choose_alpha = self._choose_alphas()
|
|
|
|
# Calculate alphas using SMO algorithm
|
|
def fit(self):
|
|
k = self._k
|
|
state = None
|
|
while True:
|
|
# 1: Find alpha1, alpha2
|
|
try:
|
|
i1, i2 = self.choose_alpha.send(state)
|
|
state = None
|
|
except StopIteration:
|
|
print("Optimization done!\nEvery sample satisfy the KKT condition!")
|
|
break
|
|
|
|
# 2: calculate new alpha2 and new alpha1
|
|
y1, y2 = self.tags[i1], self.tags[i2]
|
|
a1, a2 = self.alphas[i1].copy(), self.alphas[i2].copy()
|
|
e1, e2 = self._e(i1), self._e(i2)
|
|
args = (i1, i2, a1, a2, e1, e2, y1, y2)
|
|
a1_new, a2_new = self._get_new_alpha(*args)
|
|
if not a1_new and not a2_new:
|
|
state = False
|
|
continue
|
|
self.alphas[i1], self.alphas[i2] = a1_new, a2_new
|
|
|
|
# 3: update threshold(b)
|
|
b1_new = np.float64(
|
|
-e1
|
|
- y1 * k(i1, i1) * (a1_new - a1)
|
|
- y2 * k(i2, i1) * (a2_new - a2)
|
|
+ self._b
|
|
)
|
|
b2_new = np.float64(
|
|
-e2
|
|
- y2 * k(i2, i2) * (a2_new - a2)
|
|
- y1 * k(i1, i2) * (a1_new - a1)
|
|
+ self._b
|
|
)
|
|
if 0.0 < a1_new < self._c:
|
|
b = b1_new
|
|
if 0.0 < a2_new < self._c:
|
|
b = b2_new
|
|
if not (np.float64(0) < a2_new < self._c) and not (
|
|
np.float64(0) < a1_new < self._c
|
|
):
|
|
b = (b1_new + b2_new) / 2.0
|
|
b_old = self._b
|
|
self._b = b
|
|
|
|
# 4: update error, here we only calculate the error for non-bound samples
|
|
self._unbound = [i for i in self._all_samples if self._is_unbound(i)]
|
|
for s in self.unbound:
|
|
if s in (i1, i2):
|
|
continue
|
|
self._error[s] += (
|
|
y1 * (a1_new - a1) * k(i1, s)
|
|
+ y2 * (a2_new - a2) * k(i2, s)
|
|
+ (self._b - b_old)
|
|
)
|
|
|
|
# if i1 or i2 is non-bound, update their error value to zero
|
|
if self._is_unbound(i1):
|
|
self._error[i1] = 0
|
|
if self._is_unbound(i2):
|
|
self._error[i2] = 0
|
|
|
|
# Predict test samples
|
|
def predict(self, test_samples, classify=True):
|
|
if test_samples.shape[1] > self.samples.shape[1]:
|
|
raise ValueError(
|
|
"Test samples' feature length does not equal to that of train samples"
|
|
)
|
|
|
|
if self._auto_norm:
|
|
test_samples = self._norm(test_samples)
|
|
|
|
results = []
|
|
for test_sample in test_samples:
|
|
result = self._predict(test_sample)
|
|
if classify:
|
|
results.append(1 if result > 0 else -1)
|
|
else:
|
|
results.append(result)
|
|
return np.array(results)
|
|
|
|
# Check if alpha violates the KKT condition
|
|
def _check_obey_kkt(self, index):
|
|
alphas = self.alphas
|
|
tol = self._tol
|
|
r = self._e(index) * self.tags[index]
|
|
c = self._c
|
|
|
|
return (r < -tol and alphas[index] < c) or (r > tol and alphas[index] > 0.0)
|
|
|
|
# Get value calculated from kernel function
|
|
def _k(self, i1, i2):
|
|
# for test samples, use kernel function
|
|
if isinstance(i2, np.ndarray):
|
|
return self.Kernel(self.samples[i1], i2)
|
|
# for training samples, kernel values have been saved in matrix
|
|
else:
|
|
return self._K_matrix[i1, i2]
|
|
|
|
# Get error for sample
|
|
def _e(self, index):
|
|
"""
|
|
Two cases:
|
|
1: Sample[index] is non-bound, fetch error from list: _error
|
|
2: sample[index] is bound, use predicted value minus true value: g(xi) - yi
|
|
"""
|
|
# get from error data
|
|
if self._is_unbound(index):
|
|
return self._error[index]
|
|
# get by g(xi) - yi
|
|
else:
|
|
gx = np.dot(self.alphas * self.tags, self._K_matrix[:, index]) + self._b
|
|
yi = self.tags[index]
|
|
return gx - yi
|
|
|
|
# Calculate kernel matrix of all possible i1, i2, saving time
|
|
def _calculate_k_matrix(self):
|
|
k_matrix = np.zeros([self.length, self.length])
|
|
for i in self._all_samples:
|
|
for j in self._all_samples:
|
|
k_matrix[i, j] = np.float64(
|
|
self.Kernel(self.samples[i, :], self.samples[j, :])
|
|
)
|
|
return k_matrix
|
|
|
|
# Predict tag for test sample
|
|
def _predict(self, sample):
|
|
k = self._k
|
|
predicted_value = (
|
|
np.sum(
|
|
[
|
|
self.alphas[i1] * self.tags[i1] * k(i1, sample)
|
|
for i1 in self._all_samples
|
|
]
|
|
)
|
|
+ self._b
|
|
)
|
|
return predicted_value
|
|
|
|
# Choose alpha1 and alpha2
|
|
def _choose_alphas(self):
|
|
loci = yield from self._choose_a1()
|
|
if not loci:
|
|
return None
|
|
return loci
|
|
|
|
def _choose_a1(self):
|
|
"""
|
|
Choose first alpha
|
|
Steps:
|
|
1: First loop over all samples
|
|
2: Second loop over all non-bound samples until no non-bound samples violate
|
|
the KKT condition.
|
|
3: Repeat these two processes until no samples violate the KKT condition
|
|
after the first loop.
|
|
"""
|
|
while True:
|
|
all_not_obey = True
|
|
# all sample
|
|
print("Scanning all samples!")
|
|
for i1 in [i for i in self._all_samples if self._check_obey_kkt(i)]:
|
|
all_not_obey = False
|
|
yield from self._choose_a2(i1)
|
|
|
|
# non-bound sample
|
|
print("Scanning non-bound samples!")
|
|
while True:
|
|
not_obey = True
|
|
for i1 in [
|
|
i
|
|
for i in self._all_samples
|
|
if self._check_obey_kkt(i) and self._is_unbound(i)
|
|
]:
|
|
not_obey = False
|
|
yield from self._choose_a2(i1)
|
|
if not_obey:
|
|
print("All non-bound samples satisfy the KKT condition!")
|
|
break
|
|
if all_not_obey:
|
|
print("All samples satisfy the KKT condition!")
|
|
break
|
|
return False
|
|
|
|
def _choose_a2(self, i1):
|
|
"""
|
|
Choose the second alpha using a heuristic algorithm
|
|
Steps:
|
|
1: Choose alpha2 that maximizes the step size (|E1 - E2|).
|
|
2: Start in a random point, loop over all non-bound samples till alpha1 and
|
|
alpha2 are optimized.
|
|
3: Start in a random point, loop over all samples till alpha1 and alpha2 are
|
|
optimized.
|
|
"""
|
|
self._unbound = [i for i in self._all_samples if self._is_unbound(i)]
|
|
|
|
if len(self.unbound) > 0:
|
|
tmp_error = self._error.copy().tolist()
|
|
tmp_error_dict = {
|
|
index: value
|
|
for index, value in enumerate(tmp_error)
|
|
if self._is_unbound(index)
|
|
}
|
|
if self._e(i1) >= 0:
|
|
i2 = min(tmp_error_dict, key=lambda index: tmp_error_dict[index])
|
|
else:
|
|
i2 = max(tmp_error_dict, key=lambda index: tmp_error_dict[index])
|
|
cmd = yield i1, i2
|
|
if cmd is None:
|
|
return
|
|
|
|
rng = np.random.default_rng()
|
|
for i2 in np.roll(self.unbound, rng.choice(self.length)):
|
|
cmd = yield i1, i2
|
|
if cmd is None:
|
|
return
|
|
|
|
for i2 in np.roll(self._all_samples, rng.choice(self.length)):
|
|
cmd = yield i1, i2
|
|
if cmd is None:
|
|
return
|
|
|
|
# Get the new alpha2 and new alpha1
|
|
def _get_new_alpha(self, i1, i2, a1, a2, e1, e2, y1, y2):
|
|
k = self._k
|
|
if i1 == i2:
|
|
return None, None
|
|
|
|
# calculate L and H which bound the new alpha2
|
|
s = y1 * y2
|
|
if s == -1:
|
|
l, h = max(0.0, a2 - a1), min(self._c, self._c + a2 - a1) # noqa: E741
|
|
else:
|
|
l, h = max(0.0, a2 + a1 - self._c), min(self._c, a2 + a1) # noqa: E741
|
|
if l == h:
|
|
return None, None
|
|
|
|
# calculate eta
|
|
k11 = k(i1, i1)
|
|
k22 = k(i2, i2)
|
|
k12 = k(i1, i2)
|
|
|
|
# select the new alpha2 which could achieve the minimal objectives
|
|
if (eta := k11 + k22 - 2.0 * k12) > 0.0:
|
|
a2_new_unc = a2 + (y2 * (e1 - e2)) / eta
|
|
# a2_new has a boundary
|
|
if a2_new_unc >= h:
|
|
a2_new = h
|
|
elif a2_new_unc <= l:
|
|
a2_new = l
|
|
else:
|
|
a2_new = a2_new_unc
|
|
else:
|
|
b = self._b
|
|
l1 = a1 + s * (a2 - l)
|
|
h1 = a1 + s * (a2 - h)
|
|
|
|
# Method 1
|
|
f1 = y1 * (e1 + b) - a1 * k(i1, i1) - s * a2 * k(i1, i2)
|
|
f2 = y2 * (e2 + b) - a2 * k(i2, i2) - s * a1 * k(i1, i2)
|
|
ol = (
|
|
l1 * f1
|
|
+ l * f2
|
|
+ 1 / 2 * l1**2 * k(i1, i1)
|
|
+ 1 / 2 * l**2 * k(i2, i2)
|
|
+ s * l * l1 * k(i1, i2)
|
|
)
|
|
oh = (
|
|
h1 * f1
|
|
+ h * f2
|
|
+ 1 / 2 * h1**2 * k(i1, i1)
|
|
+ 1 / 2 * h**2 * k(i2, i2)
|
|
+ s * h * h1 * k(i1, i2)
|
|
)
|
|
"""
|
|
Method 2: Use objective function to check which alpha2_new could achieve the
|
|
minimal objectives
|
|
"""
|
|
if ol < (oh - self._eps):
|
|
a2_new = l
|
|
elif ol > oh + self._eps:
|
|
a2_new = h
|
|
else:
|
|
a2_new = a2
|
|
|
|
# a1_new has a boundary too
|
|
a1_new = a1 + s * (a2 - a2_new)
|
|
if a1_new < 0:
|
|
a2_new += s * a1_new
|
|
a1_new = 0
|
|
if a1_new > self._c:
|
|
a2_new += s * (a1_new - self._c)
|
|
a1_new = self._c
|
|
|
|
return a1_new, a2_new
|
|
|
|
# Normalize data using min-max method
|
|
def _norm(self, data):
|
|
if self._init:
|
|
self._min = np.min(data, axis=0)
|
|
self._max = np.max(data, axis=0)
|
|
self._init = False
|
|
return (data - self._min) / (self._max - self._min)
|
|
else:
|
|
return (data - self._min) / (self._max - self._min)
|
|
|
|
def _is_unbound(self, index):
|
|
return bool(0.0 < self.alphas[index] < self._c)
|
|
|
|
def _is_support(self, index):
|
|
return bool(self.alphas[index] > 0)
|
|
|
|
@property
|
|
def unbound(self):
|
|
return self._unbound
|
|
|
|
@property
|
|
def support(self):
|
|
return [i for i in range(self.length) if self._is_support(i)]
|
|
|
|
@property
|
|
def length(self):
|
|
return self.samples.shape[0]
|
|
|
|
|
|
class Kernel:
|
|
def __init__(self, kernel, degree=1.0, coef0=0.0, gamma=1.0):
|
|
self.degree = np.float64(degree)
|
|
self.coef0 = np.float64(coef0)
|
|
self.gamma = np.float64(gamma)
|
|
self._kernel_name = kernel
|
|
self._kernel = self._get_kernel(kernel_name=kernel)
|
|
self._check()
|
|
|
|
def _polynomial(self, v1, v2):
|
|
return (self.gamma * np.inner(v1, v2) + self.coef0) ** self.degree
|
|
|
|
def _linear(self, v1, v2):
|
|
return np.inner(v1, v2) + self.coef0
|
|
|
|
def _rbf(self, v1, v2):
|
|
return np.exp(-1 * (self.gamma * np.linalg.norm(v1 - v2) ** 2))
|
|
|
|
def _check(self):
|
|
if self._kernel == self._rbf and self.gamma < 0:
|
|
raise ValueError("gamma value must be non-negative")
|
|
|
|
def _get_kernel(self, kernel_name):
|
|
maps = {"linear": self._linear, "poly": self._polynomial, "rbf": self._rbf}
|
|
return maps[kernel_name]
|
|
|
|
def __call__(self, v1, v2):
|
|
return self._kernel(v1, v2)
|
|
|
|
def __repr__(self):
|
|
return self._kernel_name
|
|
|
|
|
|
def count_time(func):
|
|
def call_func(*args, **kwargs):
|
|
import time
|
|
|
|
start_time = time.time()
|
|
func(*args, **kwargs)
|
|
end_time = time.time()
|
|
print(f"SMO algorithm cost {end_time - start_time} seconds")
|
|
|
|
return call_func
|
|
|
|
|
|
@count_time
|
|
def test_cancer_data():
|
|
print("Hello!\nStart test SVM using the SMO algorithm!")
|
|
# 0: download dataset and load into pandas' dataframe
|
|
if not os.path.exists(r"cancer_data.csv"):
|
|
request = urllib.request.Request( # noqa: S310
|
|
CANCER_DATASET_URL,
|
|
headers={"User-Agent": "Mozilla/4.0 (compatible; MSIE 5.5; Windows NT)"},
|
|
)
|
|
response = urllib.request.urlopen(request) # noqa: S310
|
|
content = response.read().decode("utf-8")
|
|
with open(r"cancer_data.csv", "w") as f:
|
|
f.write(content)
|
|
|
|
data = pd.read_csv(
|
|
"cancer_data.csv",
|
|
header=None,
|
|
dtype={0: str}, # Assuming the first column contains string data
|
|
)
|
|
|
|
# 1: pre-processing data
|
|
del data[data.columns.tolist()[0]]
|
|
data = data.dropna(axis=0)
|
|
data = data.replace({"M": np.float64(1), "B": np.float64(-1)})
|
|
samples = np.array(data)[:, :]
|
|
|
|
# 2: dividing data into train_data data and test_data data
|
|
train_data, test_data = samples[:328, :], samples[328:, :]
|
|
test_tags, test_samples = test_data[:, 0], test_data[:, 1:]
|
|
|
|
# 3: choose kernel function, and set initial alphas to zero (optional)
|
|
my_kernel = Kernel(kernel="rbf", degree=5, coef0=1, gamma=0.5)
|
|
al = np.zeros(train_data.shape[0])
|
|
|
|
# 4: calculating best alphas using SMO algorithm and predict test_data samples
|
|
mysvm = SmoSVM(
|
|
train=train_data,
|
|
kernel_func=my_kernel,
|
|
alpha_list=al,
|
|
cost=0.4,
|
|
b=0.0,
|
|
tolerance=0.001,
|
|
)
|
|
mysvm.fit()
|
|
predict = mysvm.predict(test_samples)
|
|
|
|
# 5: check accuracy
|
|
score = 0
|
|
test_num = test_tags.shape[0]
|
|
for i in range(test_tags.shape[0]):
|
|
if test_tags[i] == predict[i]:
|
|
score += 1
|
|
print(f"\nAll: {test_num}\nCorrect: {score}\nIncorrect: {test_num - score}")
|
|
print(f"Rough Accuracy: {score / test_tags.shape[0]}")
|
|
|
|
|
|
def test_demonstration():
|
|
# change stdout
|
|
print("\nStarting plot, please wait!")
|
|
sys.stdout = open(os.devnull, "w")
|
|
|
|
ax1 = plt.subplot2grid((2, 2), (0, 0))
|
|
ax2 = plt.subplot2grid((2, 2), (0, 1))
|
|
ax3 = plt.subplot2grid((2, 2), (1, 0))
|
|
ax4 = plt.subplot2grid((2, 2), (1, 1))
|
|
ax1.set_title("Linear SVM, cost = 0.1")
|
|
test_linear_kernel(ax1, cost=0.1)
|
|
ax2.set_title("Linear SVM, cost = 500")
|
|
test_linear_kernel(ax2, cost=500)
|
|
ax3.set_title("RBF kernel SVM, cost = 0.1")
|
|
test_rbf_kernel(ax3, cost=0.1)
|
|
ax4.set_title("RBF kernel SVM, cost = 500")
|
|
test_rbf_kernel(ax4, cost=500)
|
|
|
|
sys.stdout = sys.__stdout__
|
|
print("Plot done!")
|
|
|
|
|
|
def test_linear_kernel(ax, cost):
|
|
train_x, train_y = make_blobs(
|
|
n_samples=500, centers=2, n_features=2, random_state=1
|
|
)
|
|
train_y[train_y == 0] = -1
|
|
scaler = StandardScaler()
|
|
train_x_scaled = scaler.fit_transform(train_x, train_y)
|
|
train_data = np.hstack((train_y.reshape(500, 1), train_x_scaled))
|
|
my_kernel = Kernel(kernel="linear", degree=5, coef0=1, gamma=0.5)
|
|
mysvm = SmoSVM(
|
|
train=train_data,
|
|
kernel_func=my_kernel,
|
|
cost=cost,
|
|
tolerance=0.001,
|
|
auto_norm=False,
|
|
)
|
|
mysvm.fit()
|
|
plot_partition_boundary(mysvm, train_data, ax=ax)
|
|
|
|
|
|
def test_rbf_kernel(ax, cost):
|
|
train_x, train_y = make_circles(
|
|
n_samples=500, noise=0.1, factor=0.1, random_state=1
|
|
)
|
|
train_y[train_y == 0] = -1
|
|
scaler = StandardScaler()
|
|
train_x_scaled = scaler.fit_transform(train_x, train_y)
|
|
train_data = np.hstack((train_y.reshape(500, 1), train_x_scaled))
|
|
my_kernel = Kernel(kernel="rbf", degree=5, coef0=1, gamma=0.5)
|
|
mysvm = SmoSVM(
|
|
train=train_data,
|
|
kernel_func=my_kernel,
|
|
cost=cost,
|
|
tolerance=0.001,
|
|
auto_norm=False,
|
|
)
|
|
mysvm.fit()
|
|
plot_partition_boundary(mysvm, train_data, ax=ax)
|
|
|
|
|
|
def plot_partition_boundary(
|
|
model, train_data, ax, resolution=100, colors=("b", "k", "r")
|
|
):
|
|
"""
|
|
We cannot get the optimal w of our kernel SVM model, which is different from a
|
|
linear SVM. For this reason, we generate randomly distributed points with high
|
|
density, and predicted values of these points are calculated using our trained
|
|
model. Then we could use this predicted values to draw contour map, and this contour
|
|
map represents the SVM's partition boundary.
|
|
"""
|
|
train_data_x = train_data[:, 1]
|
|
train_data_y = train_data[:, 2]
|
|
train_data_tags = train_data[:, 0]
|
|
xrange = np.linspace(train_data_x.min(), train_data_x.max(), resolution)
|
|
yrange = np.linspace(train_data_y.min(), train_data_y.max(), resolution)
|
|
test_samples = np.array([(x, y) for x in xrange for y in yrange]).reshape(
|
|
resolution * resolution, 2
|
|
)
|
|
|
|
test_tags = model.predict(test_samples, classify=False)
|
|
grid = test_tags.reshape((len(xrange), len(yrange)))
|
|
|
|
# Plot contour map which represents the partition boundary
|
|
ax.contour(
|
|
xrange,
|
|
yrange,
|
|
np.asmatrix(grid).T,
|
|
levels=(-1, 0, 1),
|
|
linestyles=("--", "-", "--"),
|
|
linewidths=(1, 1, 1),
|
|
colors=colors,
|
|
)
|
|
# Plot all train samples
|
|
ax.scatter(
|
|
train_data_x,
|
|
train_data_y,
|
|
c=train_data_tags,
|
|
cmap=plt.cm.Dark2,
|
|
lw=0,
|
|
alpha=0.5,
|
|
)
|
|
|
|
# Plot support vectors
|
|
support = model.support
|
|
ax.scatter(
|
|
train_data_x[support],
|
|
train_data_y[support],
|
|
c=train_data_tags[support],
|
|
cmap=plt.cm.Dark2,
|
|
)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_cancer_data()
|
|
test_demonstration()
|
|
plt.show()
|