Python/maths/numerical_analysis/newton_raphson.py
pre-commit-ci[bot] bc8df6de31
[pre-commit.ci] pre-commit autoupdate (#11322)
* [pre-commit.ci] pre-commit autoupdate

updates:
- [github.com/astral-sh/ruff-pre-commit: v0.2.2 → v0.3.2](https://github.com/astral-sh/ruff-pre-commit/compare/v0.2.2...v0.3.2)
- [github.com/pre-commit/mirrors-mypy: v1.8.0 → v1.9.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.8.0...v1.9.0)

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-03-13 07:52:41 +01:00

115 lines
3.7 KiB
Python

"""
The Newton-Raphson method (aka the Newton method) is a root-finding algorithm that
approximates a root of a given real-valued function f(x). It is an iterative method
given by the formula
x_{n + 1} = x_n + f(x_n) / f'(x_n)
with the precision of the approximation increasing as the number of iterations increase.
Reference: https://en.wikipedia.org/wiki/Newton%27s_method
"""
from collections.abc import Callable
RealFunc = Callable[[float], float]
def calc_derivative(f: RealFunc, x: float, delta_x: float = 1e-3) -> float:
"""
Approximate the derivative of a function f(x) at a point x using the finite
difference method
>>> import math
>>> tolerance = 1e-5
>>> derivative = calc_derivative(lambda x: x**2, 2)
>>> math.isclose(derivative, 4, abs_tol=tolerance)
True
>>> derivative = calc_derivative(math.sin, 0)
>>> math.isclose(derivative, 1, abs_tol=tolerance)
True
"""
return (f(x + delta_x / 2) - f(x - delta_x / 2)) / delta_x
def newton_raphson(
f: RealFunc,
x0: float = 0,
max_iter: int = 100,
step: float = 1e-6,
max_error: float = 1e-6,
log_steps: bool = False,
) -> tuple[float, float, list[float]]:
"""
Find a root of the given function f using the Newton-Raphson method.
:param f: A real-valued single-variable function
:param x0: Initial guess
:param max_iter: Maximum number of iterations
:param step: Step size of x, used to approximate f'(x)
:param max_error: Maximum approximation error
:param log_steps: bool denoting whether to log intermediate steps
:return: A tuple containing the approximation, the error, and the intermediate
steps. If log_steps is False, then an empty list is returned for the third
element of the tuple.
:raises ZeroDivisionError: The derivative approaches 0.
:raises ArithmeticError: No solution exists, or the solution isn't found before the
iteration limit is reached.
>>> import math
>>> tolerance = 1e-15
>>> root, *_ = newton_raphson(lambda x: x**2 - 5*x + 2, 0.4, max_error=tolerance)
>>> math.isclose(root, (5 - math.sqrt(17)) / 2, abs_tol=tolerance)
True
>>> root, *_ = newton_raphson(lambda x: math.log(x) - 1, 2, max_error=tolerance)
>>> math.isclose(root, math.e, abs_tol=tolerance)
True
>>> root, *_ = newton_raphson(math.sin, 1, max_error=tolerance)
>>> math.isclose(root, 0, abs_tol=tolerance)
True
>>> newton_raphson(math.cos, 0)
Traceback (most recent call last):
...
ZeroDivisionError: No converging solution found, zero derivative
>>> newton_raphson(lambda x: x**2 + 1, 2)
Traceback (most recent call last):
...
ArithmeticError: No converging solution found, iteration limit reached
"""
def f_derivative(x: float) -> float:
return calc_derivative(f, x, step)
a = x0 # Set initial guess
steps = []
for _ in range(max_iter):
if log_steps: # Log intermediate steps
steps.append(a)
error = abs(f(a))
if error < max_error:
return a, error, steps
if f_derivative(a) == 0:
raise ZeroDivisionError("No converging solution found, zero derivative")
a -= f(a) / f_derivative(a) # Calculate next estimate
raise ArithmeticError("No converging solution found, iteration limit reached")
if __name__ == "__main__":
import doctest
from math import exp, tanh
doctest.testmod()
def func(x: float) -> float:
return tanh(x) ** 2 - exp(3 * x)
solution, err, steps = newton_raphson(
func, x0=10, max_iter=100, step=1e-6, log_steps=True
)
print(f"{solution=}, {err=}")
print("\n".join(str(x) for x in steps))