Python/maths/perfect_cube.py
Dale Dai a9cee1d933
Add perfect cube binary search (#10477)
* Add perfect cube binary search algorithm

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Add support for testing negative perfect cubes

* Add TypeError check for invalid inputs

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2023-10-23 01:56:59 -04:00

56 lines
1.3 KiB
Python

def perfect_cube(n: int) -> bool:
"""
Check if a number is a perfect cube or not.
>>> perfect_cube(27)
True
>>> perfect_cube(4)
False
"""
val = n ** (1 / 3)
return (val * val * val) == n
def perfect_cube_binary_search(n: int) -> bool:
"""
Check if a number is a perfect cube or not using binary search.
Time complexity : O(Log(n))
Space complexity: O(1)
>>> perfect_cube_binary_search(27)
True
>>> perfect_cube_binary_search(64)
True
>>> perfect_cube_binary_search(4)
False
>>> perfect_cube_binary_search("a")
Traceback (most recent call last):
...
TypeError: perfect_cube_binary_search() only accepts integers
>>> perfect_cube_binary_search(0.1)
Traceback (most recent call last):
...
TypeError: perfect_cube_binary_search() only accepts integers
"""
if not isinstance(n, int):
raise TypeError("perfect_cube_binary_search() only accepts integers")
if n < 0:
n = -n
left = 0
right = n
while left <= right:
mid = left + (right - left) // 2
if mid * mid * mid == n:
return True
elif mid * mid * mid < n:
left = mid + 1
else:
right = mid - 1
return False
if __name__ == "__main__":
import doctest
doctest.testmod()