mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-12-18 01:00:15 +00:00
bc8df6de31
* [pre-commit.ci] pre-commit autoupdate updates: - [github.com/astral-sh/ruff-pre-commit: v0.2.2 → v0.3.2](https://github.com/astral-sh/ruff-pre-commit/compare/v0.2.2...v0.3.2) - [github.com/pre-commit/mirrors-mypy: v1.8.0 → v1.9.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.8.0...v1.9.0) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
205 lines
6.3 KiB
Python
205 lines
6.3 KiB
Python
"""
|
|
Jacobi Iteration Method - https://en.wikipedia.org/wiki/Jacobi_method
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
import numpy as np
|
|
from numpy import float64
|
|
from numpy.typing import NDArray
|
|
|
|
|
|
# Method to find solution of system of linear equations
|
|
def jacobi_iteration_method(
|
|
coefficient_matrix: NDArray[float64],
|
|
constant_matrix: NDArray[float64],
|
|
init_val: list[float],
|
|
iterations: int,
|
|
) -> list[float]:
|
|
"""
|
|
Jacobi Iteration Method:
|
|
An iterative algorithm to determine the solutions of strictly diagonally dominant
|
|
system of linear equations
|
|
|
|
4x1 + x2 + x3 = 2
|
|
x1 + 5x2 + 2x3 = -6
|
|
x1 + 2x2 + 4x3 = -4
|
|
|
|
x_init = [0.5, -0.5 , -0.5]
|
|
|
|
Examples:
|
|
|
|
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]])
|
|
>>> constant = np.array([[2], [-6], [-4]])
|
|
>>> init_val = [0.5, -0.5, -0.5]
|
|
>>> iterations = 3
|
|
>>> jacobi_iteration_method(coefficient, constant, init_val, iterations)
|
|
[0.909375, -1.14375, -0.7484375]
|
|
|
|
|
|
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2]])
|
|
>>> constant = np.array([[2], [-6], [-4]])
|
|
>>> init_val = [0.5, -0.5, -0.5]
|
|
>>> iterations = 3
|
|
>>> jacobi_iteration_method(coefficient, constant, init_val, iterations)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: Coefficient matrix dimensions must be nxn but received 2x3
|
|
|
|
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]])
|
|
>>> constant = np.array([[2], [-6]])
|
|
>>> init_val = [0.5, -0.5, -0.5]
|
|
>>> iterations = 3
|
|
>>> jacobi_iteration_method(
|
|
... coefficient, constant, init_val, iterations
|
|
... ) # doctest: +NORMALIZE_WHITESPACE
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: Coefficient and constant matrices dimensions must be nxn and nx1 but
|
|
received 3x3 and 2x1
|
|
|
|
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]])
|
|
>>> constant = np.array([[2], [-6], [-4]])
|
|
>>> init_val = [0.5, -0.5]
|
|
>>> iterations = 3
|
|
>>> jacobi_iteration_method(
|
|
... coefficient, constant, init_val, iterations
|
|
... ) # doctest: +NORMALIZE_WHITESPACE
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: Number of initial values must be equal to number of rows in coefficient
|
|
matrix but received 2 and 3
|
|
|
|
>>> coefficient = np.array([[4, 1, 1], [1, 5, 2], [1, 2, 4]])
|
|
>>> constant = np.array([[2], [-6], [-4]])
|
|
>>> init_val = [0.5, -0.5, -0.5]
|
|
>>> iterations = 0
|
|
>>> jacobi_iteration_method(coefficient, constant, init_val, iterations)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: Iterations must be at least 1
|
|
"""
|
|
|
|
rows1, cols1 = coefficient_matrix.shape
|
|
rows2, cols2 = constant_matrix.shape
|
|
|
|
if rows1 != cols1:
|
|
msg = f"Coefficient matrix dimensions must be nxn but received {rows1}x{cols1}"
|
|
raise ValueError(msg)
|
|
|
|
if cols2 != 1:
|
|
msg = f"Constant matrix must be nx1 but received {rows2}x{cols2}"
|
|
raise ValueError(msg)
|
|
|
|
if rows1 != rows2:
|
|
msg = (
|
|
"Coefficient and constant matrices dimensions must be nxn and nx1 but "
|
|
f"received {rows1}x{cols1} and {rows2}x{cols2}"
|
|
)
|
|
raise ValueError(msg)
|
|
|
|
if len(init_val) != rows1:
|
|
msg = (
|
|
"Number of initial values must be equal to number of rows in coefficient "
|
|
f"matrix but received {len(init_val)} and {rows1}"
|
|
)
|
|
raise ValueError(msg)
|
|
|
|
if iterations <= 0:
|
|
raise ValueError("Iterations must be at least 1")
|
|
|
|
table: NDArray[float64] = np.concatenate(
|
|
(coefficient_matrix, constant_matrix), axis=1
|
|
)
|
|
|
|
rows, cols = table.shape
|
|
|
|
strictly_diagonally_dominant(table)
|
|
|
|
"""
|
|
# Iterates the whole matrix for given number of times
|
|
for _ in range(iterations):
|
|
new_val = []
|
|
for row in range(rows):
|
|
temp = 0
|
|
for col in range(cols):
|
|
if col == row:
|
|
denom = table[row][col]
|
|
elif col == cols - 1:
|
|
val = table[row][col]
|
|
else:
|
|
temp += (-1) * table[row][col] * init_val[col]
|
|
temp = (temp + val) / denom
|
|
new_val.append(temp)
|
|
init_val = new_val
|
|
"""
|
|
|
|
# denominator - a list of values along the diagonal
|
|
denominator = np.diag(coefficient_matrix)
|
|
|
|
# val_last - values of the last column of the table array
|
|
val_last = table[:, -1]
|
|
|
|
# masks - boolean mask of all strings without diagonal
|
|
# elements array coefficient_matrix
|
|
masks = ~np.eye(coefficient_matrix.shape[0], dtype=bool)
|
|
|
|
# no_diagonals - coefficient_matrix array values without diagonal elements
|
|
no_diagonals = coefficient_matrix[masks].reshape(-1, rows - 1)
|
|
|
|
# Here we get 'i_col' - these are the column numbers, for each row
|
|
# without diagonal elements, except for the last column.
|
|
i_row, i_col = np.where(masks)
|
|
ind = i_col.reshape(-1, rows - 1)
|
|
|
|
#'i_col' is converted to a two-dimensional list 'ind', which will be
|
|
# used to make selections from 'init_val' ('arr' array see below).
|
|
|
|
# Iterates the whole matrix for given number of times
|
|
for _ in range(iterations):
|
|
arr = np.take(init_val, ind)
|
|
sum_product_rows = np.sum((-1) * no_diagonals * arr, axis=1)
|
|
new_val = (sum_product_rows + val_last) / denominator
|
|
init_val = new_val
|
|
|
|
return new_val.tolist()
|
|
|
|
|
|
# Checks if the given matrix is strictly diagonally dominant
|
|
def strictly_diagonally_dominant(table: NDArray[float64]) -> bool:
|
|
"""
|
|
>>> table = np.array([[4, 1, 1, 2], [1, 5, 2, -6], [1, 2, 4, -4]])
|
|
>>> strictly_diagonally_dominant(table)
|
|
True
|
|
|
|
>>> table = np.array([[4, 1, 1, 2], [1, 5, 2, -6], [1, 2, 3, -4]])
|
|
>>> strictly_diagonally_dominant(table)
|
|
Traceback (most recent call last):
|
|
...
|
|
ValueError: Coefficient matrix is not strictly diagonally dominant
|
|
"""
|
|
|
|
rows, cols = table.shape
|
|
|
|
is_diagonally_dominant = True
|
|
|
|
for i in range(rows):
|
|
total = 0
|
|
for j in range(cols - 1):
|
|
if i == j:
|
|
continue
|
|
else:
|
|
total += table[i][j]
|
|
|
|
if table[i][i] <= total:
|
|
raise ValueError("Coefficient matrix is not strictly diagonally dominant")
|
|
|
|
return is_diagonally_dominant
|
|
|
|
|
|
# Test Cases
|
|
if __name__ == "__main__":
|
|
import doctest
|
|
|
|
doctest.testmod()
|