mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-24 21:41:08 +00:00
88 lines
2.4 KiB
Python
88 lines
2.4 KiB
Python
class UnionFind():
|
|
"""
|
|
https://en.wikipedia.org/wiki/Disjoint-set_data_structure
|
|
|
|
The union-find is a disjoint-set data structure
|
|
|
|
You can merge two sets and tell if one set belongs to
|
|
another one.
|
|
|
|
It's used on the Kruskal Algorithm
|
|
(https://en.wikipedia.org/wiki/Kruskal%27s_algorithm)
|
|
|
|
The elements are in range [0, size]
|
|
"""
|
|
def __init__(self, size):
|
|
if size <= 0:
|
|
raise ValueError("size should be greater than 0")
|
|
|
|
self.size = size
|
|
|
|
# The below plus 1 is because we are using elements
|
|
# in range [0, size]. It makes more sense.
|
|
|
|
# Every set begins with only itself
|
|
self.root = [i for i in range(size+1)]
|
|
|
|
# This is used for heuristic union by rank
|
|
self.weight = [0 for i in range(size+1)]
|
|
|
|
def union(self, u, v):
|
|
"""
|
|
Union of the sets u and v.
|
|
Complexity: log(n).
|
|
Amortized complexity: < 5 (it's very fast).
|
|
"""
|
|
|
|
self._validate_element_range(u, "u")
|
|
self._validate_element_range(v, "v")
|
|
|
|
if u == v:
|
|
return
|
|
|
|
# Using union by rank will guarantee the
|
|
# log(n) complexity
|
|
rootu = self._root(u)
|
|
rootv = self._root(v)
|
|
weight_u = self.weight[rootu]
|
|
weight_v = self.weight[rootv]
|
|
if weight_u >= weight_v:
|
|
self.root[rootv] = rootu
|
|
if weight_u == weight_v:
|
|
self.weight[rootu] += 1
|
|
else:
|
|
self.root[rootu] = rootv
|
|
|
|
def same_set(self, u, v):
|
|
"""
|
|
Return true if the elements u and v belongs to
|
|
the same set
|
|
"""
|
|
|
|
self._validate_element_range(u, "u")
|
|
self._validate_element_range(v, "v")
|
|
|
|
return self._root(u) == self._root(v)
|
|
|
|
def _root(self, u):
|
|
"""
|
|
Get the element set root.
|
|
This uses the heuristic path compression
|
|
See wikipedia article for more details.
|
|
"""
|
|
|
|
if u != self.root[u]:
|
|
self.root[u] = self._root(self.root[u])
|
|
|
|
return self.root[u]
|
|
|
|
def _validate_element_range(self, u, element_name):
|
|
"""
|
|
Raises ValueError if element is not in range
|
|
"""
|
|
if u < 0 or u > self.size:
|
|
msg = ("element {0} with value {1} "
|
|
"should be in range [0~{2}]")\
|
|
.format(element_name, u, self.size)
|
|
raise ValueError(msg)
|