mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 08:17:01 +00:00
bc8df6de31
* [pre-commit.ci] pre-commit autoupdate updates: - [github.com/astral-sh/ruff-pre-commit: v0.2.2 → v0.3.2](https://github.com/astral-sh/ruff-pre-commit/compare/v0.2.2...v0.3.2) - [github.com/pre-commit/mirrors-mypy: v1.8.0 → v1.9.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.8.0...v1.9.0) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
114 lines
3.1 KiB
Python
114 lines
3.1 KiB
Python
"""
|
|
Graph Coloring also called "m coloring problem"
|
|
consists of coloring a given graph with at most m colors
|
|
such that no adjacent vertices are assigned the same color
|
|
|
|
Wikipedia: https://en.wikipedia.org/wiki/Graph_coloring
|
|
"""
|
|
|
|
|
|
def valid_coloring(
|
|
neighbours: list[int], colored_vertices: list[int], color: int
|
|
) -> bool:
|
|
"""
|
|
For each neighbour check if the coloring constraint is satisfied
|
|
If any of the neighbours fail the constraint return False
|
|
If all neighbours validate the constraint return True
|
|
|
|
>>> neighbours = [0,1,0,1,0]
|
|
>>> colored_vertices = [0, 2, 1, 2, 0]
|
|
|
|
>>> color = 1
|
|
>>> valid_coloring(neighbours, colored_vertices, color)
|
|
True
|
|
|
|
>>> color = 2
|
|
>>> valid_coloring(neighbours, colored_vertices, color)
|
|
False
|
|
"""
|
|
# Does any neighbour not satisfy the constraints
|
|
return not any(
|
|
neighbour == 1 and colored_vertices[i] == color
|
|
for i, neighbour in enumerate(neighbours)
|
|
)
|
|
|
|
|
|
def util_color(
|
|
graph: list[list[int]], max_colors: int, colored_vertices: list[int], index: int
|
|
) -> bool:
|
|
"""
|
|
Pseudo-Code
|
|
|
|
Base Case:
|
|
1. Check if coloring is complete
|
|
1.1 If complete return True (meaning that we successfully colored the graph)
|
|
|
|
Recursive Step:
|
|
2. Iterates over each color:
|
|
Check if the current coloring is valid:
|
|
2.1. Color given vertex
|
|
2.2. Do recursive call, check if this coloring leads to a solution
|
|
2.4. if current coloring leads to a solution return
|
|
2.5. Uncolor given vertex
|
|
|
|
>>> graph = [[0, 1, 0, 0, 0],
|
|
... [1, 0, 1, 0, 1],
|
|
... [0, 1, 0, 1, 0],
|
|
... [0, 1, 1, 0, 0],
|
|
... [0, 1, 0, 0, 0]]
|
|
>>> max_colors = 3
|
|
>>> colored_vertices = [0, 1, 0, 0, 0]
|
|
>>> index = 3
|
|
|
|
>>> util_color(graph, max_colors, colored_vertices, index)
|
|
True
|
|
|
|
>>> max_colors = 2
|
|
>>> util_color(graph, max_colors, colored_vertices, index)
|
|
False
|
|
"""
|
|
|
|
# Base Case
|
|
if index == len(graph):
|
|
return True
|
|
|
|
# Recursive Step
|
|
for i in range(max_colors):
|
|
if valid_coloring(graph[index], colored_vertices, i):
|
|
# Color current vertex
|
|
colored_vertices[index] = i
|
|
# Validate coloring
|
|
if util_color(graph, max_colors, colored_vertices, index + 1):
|
|
return True
|
|
# Backtrack
|
|
colored_vertices[index] = -1
|
|
return False
|
|
|
|
|
|
def color(graph: list[list[int]], max_colors: int) -> list[int]:
|
|
"""
|
|
Wrapper function to call subroutine called util_color
|
|
which will either return True or False.
|
|
If True is returned colored_vertices list is filled with correct colorings
|
|
|
|
>>> graph = [[0, 1, 0, 0, 0],
|
|
... [1, 0, 1, 0, 1],
|
|
... [0, 1, 0, 1, 0],
|
|
... [0, 1, 1, 0, 0],
|
|
... [0, 1, 0, 0, 0]]
|
|
|
|
>>> max_colors = 3
|
|
>>> color(graph, max_colors)
|
|
[0, 1, 0, 2, 0]
|
|
|
|
>>> max_colors = 2
|
|
>>> color(graph, max_colors)
|
|
[]
|
|
"""
|
|
colored_vertices = [-1] * len(graph)
|
|
|
|
if util_color(graph, max_colors, colored_vertices, 0):
|
|
return colored_vertices
|
|
|
|
return []
|