Python/project_euler/problem_46/sol1.py
Christian Clauss 9200a2e543
from __future__ import annotations (#2464)
* from __future__ import annotations

* fixup! from __future__ import annotations

* fixup! from __future__ import annotations

* fixup! Format Python code with psf/black push

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
2020-09-23 13:30:13 +02:00

89 lines
2.1 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
It was proposed by Christian Goldbach that every odd composite number can be
written as the sum of a prime and twice a square.
9 = 7 + 2 × 12
15 = 7 + 2 × 22
21 = 3 + 2 × 32
25 = 7 + 2 × 32
27 = 19 + 2 × 22
33 = 31 + 2 × 12
It turns out that the conjecture was false.
What is the smallest odd composite that cannot be written as the sum of a
prime and twice a square?
"""
from __future__ import annotations
seive = [True] * 100001
i = 2
while i * i <= 100000:
if seive[i]:
for j in range(i * i, 100001, i):
seive[j] = False
i += 1
def is_prime(n: int) -> bool:
"""
Returns True if n is prime,
False otherwise, for 2 <= n <= 100000
>>> is_prime(87)
False
>>> is_prime(23)
True
>>> is_prime(25363)
False
"""
return seive[n]
odd_composites = [num for num in range(3, len(seive), 2) if not is_prime(num)]
def compute_nums(n: int) -> list[int]:
"""
Returns a list of first n odd composite numbers which do
not follow the conjecture.
>>> compute_nums(1)
[5777]
>>> compute_nums(2)
[5777, 5993]
>>> compute_nums(0)
Traceback (most recent call last):
...
ValueError: n must be >= 0
>>> compute_nums("a")
Traceback (most recent call last):
...
ValueError: n must be an integer
>>> compute_nums(1.1)
Traceback (most recent call last):
...
ValueError: n must be an integer
"""
if not isinstance(n, int):
raise ValueError("n must be an integer")
if n <= 0:
raise ValueError("n must be >= 0")
list_nums = []
for num in range(len(odd_composites)):
i = 0
while 2 * i * i <= odd_composites[num]:
rem = odd_composites[num] - 2 * i * i
if is_prime(rem):
break
i += 1
else:
list_nums.append(odd_composites[num])
if len(list_nums) == n:
return list_nums
if __name__ == "__main__":
print(f"{compute_nums(1) = }")