mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-12-21 02:30:15 +00:00
bc8df6de31
* [pre-commit.ci] pre-commit autoupdate updates: - [github.com/astral-sh/ruff-pre-commit: v0.2.2 → v0.3.2](https://github.com/astral-sh/ruff-pre-commit/compare/v0.2.2...v0.3.2) - [github.com/pre-commit/mirrors-mypy: v1.8.0 → v1.9.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.8.0...v1.9.0) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
175 lines
5.6 KiB
Python
175 lines
5.6 KiB
Python
"""
|
|
Project Euler Problem 234: https://projecteuler.net/problem=234
|
|
|
|
For any integer n, consider the three functions
|
|
|
|
f1,n(x,y,z) = x^(n+1) + y^(n+1) - z^(n+1)
|
|
f2,n(x,y,z) = (xy + yz + zx)*(x^(n-1) + y^(n-1) - z^(n-1))
|
|
f3,n(x,y,z) = xyz*(xn-2 + yn-2 - zn-2)
|
|
|
|
and their combination
|
|
|
|
fn(x,y,z) = f1,n(x,y,z) + f2,n(x,y,z) - f3,n(x,y,z)
|
|
|
|
We call (x,y,z) a golden triple of order k if x, y, and z are all rational numbers
|
|
of the form a / b with 0 < a < b ≤ k and there is (at least) one integer n,
|
|
so that fn(x,y,z) = 0.
|
|
|
|
Let s(x,y,z) = x + y + z.
|
|
Let t = u / v be the sum of all distinct s(x,y,z) for all golden triples
|
|
(x,y,z) of order 35.
|
|
All the s(x,y,z) and t must be in reduced form.
|
|
|
|
Find u + v.
|
|
|
|
|
|
Solution:
|
|
|
|
By expanding the brackets it is easy to show that
|
|
fn(x, y, z) = (x + y + z) * (x^n + y^n - z^n).
|
|
|
|
Since x,y,z are positive, the requirement fn(x, y, z) = 0 is fulfilled if and
|
|
only if x^n + y^n = z^n.
|
|
|
|
By Fermat's Last Theorem, this means that the absolute value of n can not
|
|
exceed 2, i.e. n is in {-2, -1, 0, 1, 2}. We can eliminate n = 0 since then the
|
|
equation would reduce to 1 + 1 = 1, for which there are no solutions.
|
|
|
|
So all we have to do is iterate through the possible numerators and denominators
|
|
of x and y, calculate the corresponding z, and check if the corresponding numerator and
|
|
denominator are integer and satisfy 0 < z_num < z_den <= 0. We use a set "uniquq_s"
|
|
to make sure there are no duplicates, and the fractions.Fraction class to make sure
|
|
we get the right numerator and denominator.
|
|
|
|
Reference:
|
|
https://en.wikipedia.org/wiki/Fermat%27s_Last_Theorem
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
from fractions import Fraction
|
|
from math import gcd, sqrt
|
|
|
|
|
|
def is_sq(number: int) -> bool:
|
|
"""
|
|
Check if number is a perfect square.
|
|
|
|
>>> is_sq(1)
|
|
True
|
|
>>> is_sq(1000001)
|
|
False
|
|
>>> is_sq(1000000)
|
|
True
|
|
"""
|
|
sq: int = int(number**0.5)
|
|
return number == sq * sq
|
|
|
|
|
|
def add_three(
|
|
x_num: int, x_den: int, y_num: int, y_den: int, z_num: int, z_den: int
|
|
) -> tuple[int, int]:
|
|
"""
|
|
Given the numerators and denominators of three fractions, return the
|
|
numerator and denominator of their sum in lowest form.
|
|
>>> add_three(1, 3, 1, 3, 1, 3)
|
|
(1, 1)
|
|
>>> add_three(2, 5, 4, 11, 12, 3)
|
|
(262, 55)
|
|
"""
|
|
top: int = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den
|
|
bottom: int = x_den * y_den * z_den
|
|
hcf: int = gcd(top, bottom)
|
|
top //= hcf
|
|
bottom //= hcf
|
|
return top, bottom
|
|
|
|
|
|
def solution(order: int = 35) -> int:
|
|
"""
|
|
Find the sum of the numerator and denominator of the sum of all s(x,y,z) for
|
|
golden triples (x,y,z) of the given order.
|
|
|
|
>>> solution(5)
|
|
296
|
|
>>> solution(10)
|
|
12519
|
|
>>> solution(20)
|
|
19408891927
|
|
"""
|
|
unique_s: set = set()
|
|
hcf: int
|
|
total: Fraction = Fraction(0)
|
|
fraction_sum: tuple[int, int]
|
|
|
|
for x_num in range(1, order + 1):
|
|
for x_den in range(x_num + 1, order + 1):
|
|
for y_num in range(1, order + 1):
|
|
for y_den in range(y_num + 1, order + 1):
|
|
# n=1
|
|
z_num = x_num * y_den + x_den * y_num
|
|
z_den = x_den * y_den
|
|
hcf = gcd(z_num, z_den)
|
|
z_num //= hcf
|
|
z_den //= hcf
|
|
if 0 < z_num < z_den <= order:
|
|
fraction_sum = add_three(
|
|
x_num, x_den, y_num, y_den, z_num, z_den
|
|
)
|
|
unique_s.add(fraction_sum)
|
|
|
|
# n=2
|
|
z_num = (
|
|
x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num
|
|
)
|
|
z_den = x_den * x_den * y_den * y_den
|
|
if is_sq(z_num) and is_sq(z_den):
|
|
z_num = int(sqrt(z_num))
|
|
z_den = int(sqrt(z_den))
|
|
hcf = gcd(z_num, z_den)
|
|
z_num //= hcf
|
|
z_den //= hcf
|
|
if 0 < z_num < z_den <= order:
|
|
fraction_sum = add_three(
|
|
x_num, x_den, y_num, y_den, z_num, z_den
|
|
)
|
|
unique_s.add(fraction_sum)
|
|
|
|
# n=-1
|
|
z_num = x_num * y_num
|
|
z_den = x_den * y_num + x_num * y_den
|
|
hcf = gcd(z_num, z_den)
|
|
z_num //= hcf
|
|
z_den //= hcf
|
|
if 0 < z_num < z_den <= order:
|
|
fraction_sum = add_three(
|
|
x_num, x_den, y_num, y_den, z_num, z_den
|
|
)
|
|
unique_s.add(fraction_sum)
|
|
|
|
# n=2
|
|
z_num = x_num * x_num * y_num * y_num
|
|
z_den = (
|
|
x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den
|
|
)
|
|
if is_sq(z_num) and is_sq(z_den):
|
|
z_num = int(sqrt(z_num))
|
|
z_den = int(sqrt(z_den))
|
|
hcf = gcd(z_num, z_den)
|
|
z_num //= hcf
|
|
z_den //= hcf
|
|
if 0 < z_num < z_den <= order:
|
|
fraction_sum = add_three(
|
|
x_num, x_den, y_num, y_den, z_num, z_den
|
|
)
|
|
unique_s.add(fraction_sum)
|
|
|
|
for num, den in unique_s:
|
|
total += Fraction(num, den)
|
|
|
|
return total.denominator + total.numerator
|
|
|
|
|
|
if __name__ == "__main__":
|
|
print(f"{solution() = }")
|