Python/machine_learning/loss_functions/binary_cross_entropy.py
Arnav Kohli 81b29066d2
Created folder for losses in Machine_Learning (#9969)
* Created folder for losses in Machine_Learning

* Update binary_cross_entropy.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update mean_squared_error.py

* Update binary_cross_entropy.py

* Update mean_squared_error.py

* Update binary_cross_entropy.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update mean_squared_error.py

* Update binary_cross_entropy.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update mean_squared_error.py

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update binary_cross_entropy.py

* Update mean_squared_error.py

* Update binary_cross_entropy.py

* Update mean_squared_error.py

* Update machine_learning/losses/binary_cross_entropy.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* Update machine_learning/losses/mean_squared_error.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* Update machine_learning/losses/binary_cross_entropy.py

Co-authored-by: Christian Clauss <cclauss@me.com>

* Update mean_squared_error.py

* Update machine_learning/losses/mean_squared_error.py

Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>

* Update binary_cross_entropy.py

* Update mean_squared_error.py

* Update binary_cross_entropy.py

* Update mean_squared_error.py

* Update mean_squared_error.py

* Update binary_cross_entropy.py

* renamed: losses -> loss_functions

* updated 2 files

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update mean_squared_error.py

* Update mean_squared_error.py

* Update binary_cross_entropy.py

* Update mean_squared_error.py

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Christian Clauss <cclauss@me.com>
Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>
2023-10-08 12:04:43 -04:00

60 lines
1.7 KiB
Python

"""
Binary Cross-Entropy (BCE) Loss Function
Description:
Quantifies dissimilarity between true labels (0 or 1) and predicted probabilities.
It's widely used in binary classification tasks.
Formula:
BCE = -Σ(y_true * log(y_pred) + (1 - y_true) * log(1 - y_pred))
Source:
[Wikipedia - Cross entropy](https://en.wikipedia.org/wiki/Cross_entropy)
"""
import numpy as np
def binary_cross_entropy(
y_true: np.ndarray, y_pred: np.ndarray, epsilon: float = 1e-15
) -> float:
"""
Calculate the BCE Loss between true labels and predicted probabilities.
Parameters:
- y_true: True binary labels (0 or 1).
- y_pred: Predicted probabilities for class 1.
- epsilon: Small constant to avoid numerical instability.
Returns:
- bce_loss: Binary Cross-Entropy Loss.
Example Usage:
>>> true_labels = np.array([0, 1, 1, 0, 1])
>>> predicted_probs = np.array([0.2, 0.7, 0.9, 0.3, 0.8])
>>> binary_cross_entropy(true_labels, predicted_probs)
0.2529995012327421
>>> true_labels = np.array([0, 1, 1, 0, 1])
>>> predicted_probs = np.array([0.3, 0.8, 0.9, 0.2])
>>> binary_cross_entropy(true_labels, predicted_probs)
Traceback (most recent call last):
...
ValueError: Input arrays must have the same length.
"""
if len(y_true) != len(y_pred):
raise ValueError("Input arrays must have the same length.")
# Clip predicted probabilities to avoid log(0) and log(1)
y_pred = np.clip(y_pred, epsilon, 1 - epsilon)
# Calculate binary cross-entropy loss
bce_loss = -(y_true * np.log(y_pred) + (1 - y_true) * np.log(1 - y_pred))
# Take the mean over all samples
return np.mean(bce_loss)
if __name__ == "__main__":
import doctest
doctest.testmod()