Python/machine_learning/random_forest_regressor.py.broken.txt
Victor Rodrigues da Silva 3f8b2af14b
Add autoclave cipher (#8029)
* Add autoclave cipher

* Update autoclave with the given suggestions

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Fixing errors

* Another fixes

* Update and rename autoclave.py to autokey.py

* Rename gaussian_naive_bayes.py to gaussian_naive_bayes.py.broken.txt

* Rename gradient_boosting_regressor.py to gradient_boosting_regressor.py.broken.txt

* Rename random_forest_classifier.py to random_forest_classifier.py.broken.txt

* Rename random_forest_regressor.py to random_forest_regressor.py.broken.txt

* Rename equal_loudness_filter.py to equal_loudness_filter.py.broken.txt

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Christian Clauss <cclauss@me.com>
2022-12-18 23:26:39 +01:00

41 lines
1.2 KiB
Plaintext

# Random Forest Regressor Example
from sklearn.datasets import load_boston
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import mean_absolute_error, mean_squared_error
from sklearn.model_selection import train_test_split
def main():
"""
Random Forest Regressor Example using sklearn function.
Boston house price dataset is used to demonstrate the algorithm.
"""
# Load Boston house price dataset
boston = load_boston()
print(boston.keys())
# Split dataset into train and test data
x = boston["data"] # features
y = boston["target"]
x_train, x_test, y_train, y_test = train_test_split(
x, y, test_size=0.3, random_state=1
)
# Random Forest Regressor
rand_for = RandomForestRegressor(random_state=42, n_estimators=300)
rand_for.fit(x_train, y_train)
# Predict target for test data
predictions = rand_for.predict(x_test)
predictions = predictions.reshape(len(predictions), 1)
# Error printing
print(f"Mean Absolute Error:\t {mean_absolute_error(y_test, predictions)}")
print(f"Mean Square Error :\t {mean_squared_error(y_test, predictions)}")
if __name__ == "__main__":
main()