2020-02-07 18:37:14 +00:00
|
|
|
# Random Forest Regressor Example
|
|
|
|
from sklearn.datasets import load_boston
|
|
|
|
from sklearn.ensemble import RandomForestRegressor
|
2020-07-06 07:44:19 +00:00
|
|
|
from sklearn.metrics import mean_absolute_error, mean_squared_error
|
|
|
|
from sklearn.model_selection import train_test_split
|
2020-02-07 18:37:14 +00:00
|
|
|
|
|
|
|
|
|
|
|
def main():
|
|
|
|
|
|
|
|
"""
|
2020-04-17 10:43:50 +00:00
|
|
|
Random Forest Regressor Example using sklearn function.
|
|
|
|
Boston house price dataset is used to demonstrate the algorithm.
|
2020-02-07 18:37:14 +00:00
|
|
|
"""
|
|
|
|
|
|
|
|
# Load Boston house price dataset
|
|
|
|
boston = load_boston()
|
|
|
|
print(boston.keys())
|
|
|
|
|
|
|
|
# Split dataset into train and test data
|
2022-10-12 22:54:20 +00:00
|
|
|
x = boston["data"] # features
|
|
|
|
y = boston["target"]
|
2020-02-07 18:37:14 +00:00
|
|
|
x_train, x_test, y_train, y_test = train_test_split(
|
2022-10-12 22:54:20 +00:00
|
|
|
x, y, test_size=0.3, random_state=1
|
2020-02-07 18:37:14 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
# Random Forest Regressor
|
|
|
|
rand_for = RandomForestRegressor(random_state=42, n_estimators=300)
|
|
|
|
rand_for.fit(x_train, y_train)
|
|
|
|
|
|
|
|
# Predict target for test data
|
|
|
|
predictions = rand_for.predict(x_test)
|
|
|
|
predictions = predictions.reshape(len(predictions), 1)
|
|
|
|
|
|
|
|
# Error printing
|
|
|
|
print(f"Mean Absolute Error:\t {mean_absolute_error(y_test, predictions)}")
|
|
|
|
print(f"Mean Square Error :\t {mean_squared_error(y_test, predictions)}")
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
main()
|