Python/maths/solovay_strassen_primality_test.py
pre-commit-ci[bot] bc8df6de31
[pre-commit.ci] pre-commit autoupdate (#11322)
* [pre-commit.ci] pre-commit autoupdate

updates:
- [github.com/astral-sh/ruff-pre-commit: v0.2.2 → v0.3.2](https://github.com/astral-sh/ruff-pre-commit/compare/v0.2.2...v0.3.2)
- [github.com/pre-commit/mirrors-mypy: v1.8.0 → v1.9.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.8.0...v1.9.0)

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

---------

Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
2024-03-13 07:52:41 +01:00

107 lines
2.7 KiB
Python

"""
This script implements the Solovay-Strassen Primality test.
This probabilistic primality test is based on Euler's criterion. It is similar
to the Fermat test but uses quadratic residues. It can quickly identify
composite numbers but may occasionally classify composite numbers as prime.
More details and concepts about this can be found on:
https://en.wikipedia.org/wiki/Solovay%E2%80%93Strassen_primality_test
"""
import random
def jacobi_symbol(random_a: int, number: int) -> int:
"""
Calculate the Jacobi symbol. The Jacobi symbol is a generalization
of the Legendre symbol, which can be used to simplify computations involving
quadratic residues. The Jacobi symbol is used in primality tests, like the
Solovay-Strassen test, because it helps determine if an integer is a
quadratic residue modulo a given modulus, providing valuable information
about the number's potential primality or compositeness.
Parameters:
random_a: A randomly chosen integer from 2 to n-2 (inclusive)
number: The number that is tested for primality
Returns:
jacobi_symbol: The Jacobi symbol is a mathematical function
used to determine whether an integer is a quadratic residue modulo
another integer (usually prime) or not.
>>> jacobi_symbol(2, 13)
-1
>>> jacobi_symbol(5, 19)
1
>>> jacobi_symbol(7, 14)
0
"""
if random_a in (0, 1):
return random_a
random_a %= number
t = 1
while random_a != 0:
while random_a % 2 == 0:
random_a //= 2
r = number % 8
if r in (3, 5):
t = -t
random_a, number = number, random_a
if random_a % 4 == number % 4 == 3:
t = -t
random_a %= number
return t if number == 1 else 0
def solovay_strassen(number: int, iterations: int) -> bool:
"""
Check whether the input number is prime or not using
the Solovay-Strassen Primality test
Parameters:
number: The number that is tested for primality
iterations: The number of times that the test is run
which effects the accuracy
Returns:
result: True if number is probably prime and false
if not
>>> random.seed(10)
>>> solovay_strassen(13, 5)
True
>>> solovay_strassen(9, 10)
False
>>> solovay_strassen(17, 15)
True
"""
if number <= 1:
return False
if number <= 3:
return True
for _ in range(iterations):
a = random.randint(2, number - 2)
x = jacobi_symbol(a, number)
y = pow(a, (number - 1) // 2, number)
if x == 0 or y != x % number:
return False
return True
if __name__ == "__main__":
import doctest
doctest.testmod()