mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-12-18 01:00:15 +00:00
bc8df6de31
* [pre-commit.ci] pre-commit autoupdate updates: - [github.com/astral-sh/ruff-pre-commit: v0.2.2 → v0.3.2](https://github.com/astral-sh/ruff-pre-commit/compare/v0.2.2...v0.3.2) - [github.com/pre-commit/mirrors-mypy: v1.8.0 → v1.9.0](https://github.com/pre-commit/mirrors-mypy/compare/v1.8.0...v1.9.0) * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
408 lines
16 KiB
Python
408 lines
16 KiB
Python
"""
|
|
Linear Discriminant Analysis
|
|
|
|
|
|
|
|
Assumptions About Data :
|
|
1. The input variables has a gaussian distribution.
|
|
2. The variance calculated for each input variables by class grouping is the
|
|
same.
|
|
3. The mix of classes in your training set is representative of the problem.
|
|
|
|
|
|
Learning The Model :
|
|
The LDA model requires the estimation of statistics from the training data :
|
|
1. Mean of each input value for each class.
|
|
2. Probability of an instance belong to each class.
|
|
3. Covariance for the input data for each class
|
|
|
|
Calculate the class means :
|
|
mean(x) = 1/n ( for i = 1 to i = n --> sum(xi))
|
|
|
|
Calculate the class probabilities :
|
|
P(y = 0) = count(y = 0) / (count(y = 0) + count(y = 1))
|
|
P(y = 1) = count(y = 1) / (count(y = 0) + count(y = 1))
|
|
|
|
Calculate the variance :
|
|
We can calculate the variance for dataset in two steps :
|
|
1. Calculate the squared difference for each input variable from the
|
|
group mean.
|
|
2. Calculate the mean of the squared difference.
|
|
------------------------------------------------
|
|
Squared_Difference = (x - mean(k)) ** 2
|
|
Variance = (1 / (count(x) - count(classes))) *
|
|
(for i = 1 to i = n --> sum(Squared_Difference(xi)))
|
|
|
|
Making Predictions :
|
|
discriminant(x) = x * (mean / variance) -
|
|
((mean ** 2) / (2 * variance)) + Ln(probability)
|
|
---------------------------------------------------------------------------
|
|
After calculating the discriminant value for each class, the class with the
|
|
largest discriminant value is taken as the prediction.
|
|
|
|
Author: @EverLookNeverSee
|
|
"""
|
|
|
|
from collections.abc import Callable
|
|
from math import log
|
|
from os import name, system
|
|
from random import gauss, seed
|
|
from typing import TypeVar
|
|
|
|
|
|
# Make a training dataset drawn from a gaussian distribution
|
|
def gaussian_distribution(mean: float, std_dev: float, instance_count: int) -> list:
|
|
"""
|
|
Generate gaussian distribution instances based-on given mean and standard deviation
|
|
:param mean: mean value of class
|
|
:param std_dev: value of standard deviation entered by usr or default value of it
|
|
:param instance_count: instance number of class
|
|
:return: a list containing generated values based-on given mean, std_dev and
|
|
instance_count
|
|
|
|
>>> gaussian_distribution(5.0, 1.0, 20) # doctest: +NORMALIZE_WHITESPACE
|
|
[6.288184753155463, 6.4494456086997705, 5.066335808938262, 4.235456349028368,
|
|
3.9078267848958586, 5.031334516831717, 3.977896829989127, 3.56317055489747,
|
|
5.199311976483754, 5.133374604658605, 5.546468300338232, 4.086029056264687,
|
|
5.005005283626573, 4.935258239627312, 3.494170998739258, 5.537997178661033,
|
|
5.320711100998849, 7.3891120432406865, 5.202969177309964, 4.855297691835079]
|
|
"""
|
|
seed(1)
|
|
return [gauss(mean, std_dev) for _ in range(instance_count)]
|
|
|
|
|
|
# Make corresponding Y flags to detecting classes
|
|
def y_generator(class_count: int, instance_count: list) -> list:
|
|
"""
|
|
Generate y values for corresponding classes
|
|
:param class_count: Number of classes(data groupings) in dataset
|
|
:param instance_count: number of instances in class
|
|
:return: corresponding values for data groupings in dataset
|
|
|
|
>>> y_generator(1, [10])
|
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0]
|
|
>>> y_generator(2, [5, 10])
|
|
[0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
|
|
>>> y_generator(4, [10, 5, 15, 20]) # doctest: +NORMALIZE_WHITESPACE
|
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
|
2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3]
|
|
"""
|
|
|
|
return [k for k in range(class_count) for _ in range(instance_count[k])]
|
|
|
|
|
|
# Calculate the class means
|
|
def calculate_mean(instance_count: int, items: list) -> float:
|
|
"""
|
|
Calculate given class mean
|
|
:param instance_count: Number of instances in class
|
|
:param items: items that related to specific class(data grouping)
|
|
:return: calculated actual mean of considered class
|
|
|
|
>>> items = gaussian_distribution(5.0, 1.0, 20)
|
|
>>> calculate_mean(len(items), items)
|
|
5.011267842911003
|
|
"""
|
|
# the sum of all items divided by number of instances
|
|
return sum(items) / instance_count
|
|
|
|
|
|
# Calculate the class probabilities
|
|
def calculate_probabilities(instance_count: int, total_count: int) -> float:
|
|
"""
|
|
Calculate the probability that a given instance will belong to which class
|
|
:param instance_count: number of instances in class
|
|
:param total_count: the number of all instances
|
|
:return: value of probability for considered class
|
|
|
|
>>> calculate_probabilities(20, 60)
|
|
0.3333333333333333
|
|
>>> calculate_probabilities(30, 100)
|
|
0.3
|
|
"""
|
|
# number of instances in specific class divided by number of all instances
|
|
return instance_count / total_count
|
|
|
|
|
|
# Calculate the variance
|
|
def calculate_variance(items: list, means: list, total_count: int) -> float:
|
|
"""
|
|
Calculate the variance
|
|
:param items: a list containing all items(gaussian distribution of all classes)
|
|
:param means: a list containing real mean values of each class
|
|
:param total_count: the number of all instances
|
|
:return: calculated variance for considered dataset
|
|
|
|
>>> items = gaussian_distribution(5.0, 1.0, 20)
|
|
>>> means = [5.011267842911003]
|
|
>>> total_count = 20
|
|
>>> calculate_variance([items], means, total_count)
|
|
0.9618530973487491
|
|
"""
|
|
squared_diff = [] # An empty list to store all squared differences
|
|
# iterate over number of elements in items
|
|
for i in range(len(items)):
|
|
# for loop iterates over number of elements in inner layer of items
|
|
for j in range(len(items[i])):
|
|
# appending squared differences to 'squared_diff' list
|
|
squared_diff.append((items[i][j] - means[i]) ** 2)
|
|
|
|
# one divided by (the number of all instances - number of classes) multiplied by
|
|
# sum of all squared differences
|
|
n_classes = len(means) # Number of classes in dataset
|
|
return 1 / (total_count - n_classes) * sum(squared_diff)
|
|
|
|
|
|
# Making predictions
|
|
def predict_y_values(
|
|
x_items: list, means: list, variance: float, probabilities: list
|
|
) -> list:
|
|
"""This function predicts new indexes(groups for our data)
|
|
:param x_items: a list containing all items(gaussian distribution of all classes)
|
|
:param means: a list containing real mean values of each class
|
|
:param variance: calculated value of variance by calculate_variance function
|
|
:param probabilities: a list containing all probabilities of classes
|
|
:return: a list containing predicted Y values
|
|
|
|
>>> x_items = [[6.288184753155463, 6.4494456086997705, 5.066335808938262,
|
|
... 4.235456349028368, 3.9078267848958586, 5.031334516831717,
|
|
... 3.977896829989127, 3.56317055489747, 5.199311976483754,
|
|
... 5.133374604658605, 5.546468300338232, 4.086029056264687,
|
|
... 5.005005283626573, 4.935258239627312, 3.494170998739258,
|
|
... 5.537997178661033, 5.320711100998849, 7.3891120432406865,
|
|
... 5.202969177309964, 4.855297691835079], [11.288184753155463,
|
|
... 11.44944560869977, 10.066335808938263, 9.235456349028368,
|
|
... 8.907826784895859, 10.031334516831716, 8.977896829989128,
|
|
... 8.56317055489747, 10.199311976483754, 10.133374604658606,
|
|
... 10.546468300338232, 9.086029056264687, 10.005005283626572,
|
|
... 9.935258239627313, 8.494170998739259, 10.537997178661033,
|
|
... 10.320711100998848, 12.389112043240686, 10.202969177309964,
|
|
... 9.85529769183508], [16.288184753155463, 16.449445608699772,
|
|
... 15.066335808938263, 14.235456349028368, 13.907826784895859,
|
|
... 15.031334516831716, 13.977896829989128, 13.56317055489747,
|
|
... 15.199311976483754, 15.133374604658606, 15.546468300338232,
|
|
... 14.086029056264687, 15.005005283626572, 14.935258239627313,
|
|
... 13.494170998739259, 15.537997178661033, 15.320711100998848,
|
|
... 17.389112043240686, 15.202969177309964, 14.85529769183508]]
|
|
|
|
>>> means = [5.011267842911003, 10.011267842911003, 15.011267842911002]
|
|
>>> variance = 0.9618530973487494
|
|
>>> probabilities = [0.3333333333333333, 0.3333333333333333, 0.3333333333333333]
|
|
>>> predict_y_values(x_items, means, variance,
|
|
... probabilities) # doctest: +NORMALIZE_WHITESPACE
|
|
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
|
|
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
|
|
2, 2, 2, 2, 2, 2, 2, 2, 2]
|
|
|
|
"""
|
|
# An empty list to store generated discriminant values of all items in dataset for
|
|
# each class
|
|
results = []
|
|
# for loop iterates over number of elements in list
|
|
for i in range(len(x_items)):
|
|
# for loop iterates over number of inner items of each element
|
|
for j in range(len(x_items[i])):
|
|
temp = [] # to store all discriminant values of each item as a list
|
|
# for loop iterates over number of classes we have in our dataset
|
|
for k in range(len(x_items)):
|
|
# appending values of discriminants for each class to 'temp' list
|
|
temp.append(
|
|
x_items[i][j] * (means[k] / variance)
|
|
- (means[k] ** 2 / (2 * variance))
|
|
+ log(probabilities[k])
|
|
)
|
|
# appending discriminant values of each item to 'results' list
|
|
results.append(temp)
|
|
|
|
return [result.index(max(result)) for result in results]
|
|
|
|
|
|
# Calculating Accuracy
|
|
def accuracy(actual_y: list, predicted_y: list) -> float:
|
|
"""
|
|
Calculate the value of accuracy based-on predictions
|
|
:param actual_y:a list containing initial Y values generated by 'y_generator'
|
|
function
|
|
:param predicted_y: a list containing predicted Y values generated by
|
|
'predict_y_values' function
|
|
:return: percentage of accuracy
|
|
|
|
>>> actual_y = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
|
|
... 1, 1 ,1 ,1 ,1 ,1 ,1]
|
|
>>> predicted_y = [0, 0, 0, 1, 1, 1, 0, 0, 1, 1, 0, 0,
|
|
... 0, 0, 1, 1, 1, 0, 1, 1, 1]
|
|
>>> accuracy(actual_y, predicted_y)
|
|
50.0
|
|
|
|
>>> actual_y = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1,
|
|
... 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
|
|
>>> predicted_y = [0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1,
|
|
... 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2]
|
|
>>> accuracy(actual_y, predicted_y)
|
|
100.0
|
|
"""
|
|
# iterate over one element of each list at a time (zip mode)
|
|
# prediction is correct if actual Y value equals to predicted Y value
|
|
correct = sum(1 for i, j in zip(actual_y, predicted_y) if i == j)
|
|
# percentage of accuracy equals to number of correct predictions divided by number
|
|
# of all data and multiplied by 100
|
|
return (correct / len(actual_y)) * 100
|
|
|
|
|
|
num = TypeVar("num")
|
|
|
|
|
|
def valid_input(
|
|
input_type: Callable[[object], num], # Usually float or int
|
|
input_msg: str,
|
|
err_msg: str,
|
|
condition: Callable[[num], bool] = lambda x: True,
|
|
default: str | None = None,
|
|
) -> num:
|
|
"""
|
|
Ask for user value and validate that it fulfill a condition.
|
|
|
|
:input_type: user input expected type of value
|
|
:input_msg: message to show user in the screen
|
|
:err_msg: message to show in the screen in case of error
|
|
:condition: function that represents the condition that user input is valid.
|
|
:default: Default value in case the user does not type anything
|
|
:return: user's input
|
|
"""
|
|
while True:
|
|
try:
|
|
user_input = input_type(input(input_msg).strip() or default)
|
|
if condition(user_input):
|
|
return user_input
|
|
else:
|
|
print(f"{user_input}: {err_msg}")
|
|
continue
|
|
except ValueError:
|
|
print(
|
|
f"{user_input}: Incorrect input type, expected {input_type.__name__!r}"
|
|
)
|
|
|
|
|
|
# Main Function
|
|
def main():
|
|
"""This function starts execution phase"""
|
|
while True:
|
|
print(" Linear Discriminant Analysis ".center(50, "*"))
|
|
print("*" * 50, "\n")
|
|
print("First of all we should specify the number of classes that")
|
|
print("we want to generate as training dataset")
|
|
# Trying to get number of classes
|
|
n_classes = valid_input(
|
|
input_type=int,
|
|
condition=lambda x: x > 0,
|
|
input_msg="Enter the number of classes (Data Groupings): ",
|
|
err_msg="Number of classes should be positive!",
|
|
)
|
|
|
|
print("-" * 100)
|
|
|
|
# Trying to get the value of standard deviation
|
|
std_dev = valid_input(
|
|
input_type=float,
|
|
condition=lambda x: x >= 0,
|
|
input_msg=(
|
|
"Enter the value of standard deviation"
|
|
"(Default value is 1.0 for all classes): "
|
|
),
|
|
err_msg="Standard deviation should not be negative!",
|
|
default="1.0",
|
|
)
|
|
|
|
print("-" * 100)
|
|
|
|
# Trying to get number of instances in classes and theirs means to generate
|
|
# dataset
|
|
counts = [] # An empty list to store instance counts of classes in dataset
|
|
for i in range(n_classes):
|
|
user_count = valid_input(
|
|
input_type=int,
|
|
condition=lambda x: x > 0,
|
|
input_msg=(f"Enter The number of instances for class_{i+1}: "),
|
|
err_msg="Number of instances should be positive!",
|
|
)
|
|
counts.append(user_count)
|
|
print("-" * 100)
|
|
|
|
# An empty list to store values of user-entered means of classes
|
|
user_means = []
|
|
for a in range(n_classes):
|
|
user_mean = valid_input(
|
|
input_type=float,
|
|
input_msg=(f"Enter the value of mean for class_{a+1}: "),
|
|
err_msg="This is an invalid value.",
|
|
)
|
|
user_means.append(user_mean)
|
|
print("-" * 100)
|
|
|
|
print("Standard deviation: ", std_dev)
|
|
# print out the number of instances in classes in separated line
|
|
for i, count in enumerate(counts, 1):
|
|
print(f"Number of instances in class_{i} is: {count}")
|
|
print("-" * 100)
|
|
|
|
# print out mean values of classes separated line
|
|
for i, user_mean in enumerate(user_means, 1):
|
|
print(f"Mean of class_{i} is: {user_mean}")
|
|
print("-" * 100)
|
|
|
|
# Generating training dataset drawn from gaussian distribution
|
|
x = [
|
|
gaussian_distribution(user_means[j], std_dev, counts[j])
|
|
for j in range(n_classes)
|
|
]
|
|
print("Generated Normal Distribution: \n", x)
|
|
print("-" * 100)
|
|
|
|
# Generating Ys to detecting corresponding classes
|
|
y = y_generator(n_classes, counts)
|
|
print("Generated Corresponding Ys: \n", y)
|
|
print("-" * 100)
|
|
|
|
# Calculating the value of actual mean for each class
|
|
actual_means = [calculate_mean(counts[k], x[k]) for k in range(n_classes)]
|
|
# for loop iterates over number of elements in 'actual_means' list and print
|
|
# out them in separated line
|
|
for i, actual_mean in enumerate(actual_means, 1):
|
|
print(f"Actual(Real) mean of class_{i} is: {actual_mean}")
|
|
print("-" * 100)
|
|
|
|
# Calculating the value of probabilities for each class
|
|
probabilities = [
|
|
calculate_probabilities(counts[i], sum(counts)) for i in range(n_classes)
|
|
]
|
|
|
|
# for loop iterates over number of elements in 'probabilities' list and print
|
|
# out them in separated line
|
|
for i, probability in enumerate(probabilities, 1):
|
|
print(f"Probability of class_{i} is: {probability}")
|
|
print("-" * 100)
|
|
|
|
# Calculating the values of variance for each class
|
|
variance = calculate_variance(x, actual_means, sum(counts))
|
|
print("Variance: ", variance)
|
|
print("-" * 100)
|
|
|
|
# Predicting Y values
|
|
# storing predicted Y values in 'pre_indexes' variable
|
|
pre_indexes = predict_y_values(x, actual_means, variance, probabilities)
|
|
print("-" * 100)
|
|
|
|
# Calculating Accuracy of the model
|
|
print(f"Accuracy: {accuracy(y, pre_indexes)}")
|
|
print("-" * 100)
|
|
print(" DONE ".center(100, "+"))
|
|
|
|
if input("Press any key to restart or 'q' for quit: ").strip().lower() == "q":
|
|
print("\n" + "GoodBye!".center(100, "-") + "\n")
|
|
break
|
|
system("cls" if name == "nt" else "clear") # noqa: S605
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|