Python/project_euler/problem_41/sol1.py
Joan 7d54056497
[Project Euler] Fix code style in Problem 41 (#2992)
* add problem title and link, fix f-string

Signed-off-by: joan.rosellr <joan.rosellr@gmail.com>

* fix code style and improve doctests

Signed-off-by: joan.rosellr <joan.rosellr@gmail.com>

* undo changes to the main call

Signed-off-by: joan.rosellr <joan.rosellr@gmail.com>

* remove assignment operator in f-string

Signed-off-by: joan.rosellr <joan.rosellr@gmail.com>

* add newline after first import to attempt to fix pre-commit workflow

Signed-off-by: joan.rosellr <joan.rosellr@gmail.com>

* undo doctest changes, rename compute_pandigital_primes to solution

Signed-off-by: joan.rosellr <joan.rosellr@gmail.com>

* update solution to return the actual solution instead of a list

Signed-off-by: joan.rosellr <joan.rosellr@gmail.com>

* Update sol1.py

Co-authored-by: Dhruv <dhruvmanila@gmail.com>
2020-10-08 13:57:07 +05:30

57 lines
1.5 KiB
Python

"""
Pandigital prime
Problem 41: https://projecteuler.net/problem=41
We shall say that an n-digit number is pandigital if it makes use of all the digits
1 to n exactly once. For example, 2143 is a 4-digit pandigital and is also prime.
What is the largest n-digit pandigital prime that exists?
All pandigital numbers except for 1, 4 ,7 pandigital numbers are divisible by 3.
So we will check only 7 digit pandigital numbers to obtain the largest possible
pandigital prime.
"""
from __future__ import annotations
from itertools import permutations
from math import sqrt
def is_prime(n: int) -> bool:
"""
Returns True if n is prime,
False otherwise.
>>> is_prime(67483)
False
>>> is_prime(563)
True
>>> is_prime(87)
False
"""
if n % 2 == 0:
return False
for i in range(3, int(sqrt(n) + 1), 2):
if n % i == 0:
return False
return True
def solution(n: int = 7) -> int:
"""
Returns the maximum pandigital prime number of length n.
If there are none, then it will return 0.
>>> solution(2)
0
>>> solution(4)
4231
>>> solution(7)
7652413
"""
pandigital_str = "".join(str(i) for i in range(1, n + 1))
perm_list = [int("".join(i)) for i in permutations(pandigital_str, n)]
pandigitals = [num for num in perm_list if is_prime(num)]
return max(pandigitals) if pandigitals else 0
if __name__ == "__main__":
print(f"{solution() = }")