mirror of
https://github.com/metafy-social/python-scripts.git
synced 2025-01-05 17:07:05 +00:00
36 lines
1.4 KiB
Python
36 lines
1.4 KiB
Python
|
# Plagiarism detector using cosine similarity
|
||
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
||
|
from sklearn.metrics.pairwise import cosine_similarity
|
||
|
|
||
|
|
||
|
def Plagiarism_Checker(files, student):
|
||
|
results = set()
|
||
|
# converting text from the text file and storing into an array
|
||
|
v = lambda Text: TfidfVectorizer().fit_transform(Text).toarray()
|
||
|
# comparing of two data from two text files
|
||
|
similarity = lambda doc1, doc2: cosine_similarity([doc1, doc2])
|
||
|
vectors = list(zip(files, v(student)))
|
||
|
|
||
|
for stud, text_vector_a in vectors:
|
||
|
n_vectors = vectors.copy()
|
||
|
i = n_vectors.index((stud, text_vector_a))
|
||
|
del n_vectors[i]
|
||
|
for stud2, vector2 in n_vectors:
|
||
|
# matching similairty score by comparing elements present
|
||
|
# in an array
|
||
|
sim_score = similarity(text_vector_a, vector2)[0][1]
|
||
|
stud_pair = sorted((stud, stud2))
|
||
|
match_per = (stud_pair[0], stud_pair[1],sim_score)
|
||
|
results.add(match_per)
|
||
|
#returns the score for matching between 2 files. percent match = score*100 %
|
||
|
return results
|
||
|
student_files = ["sample1.txt", "sample2.txt"]
|
||
|
student_notes = []
|
||
|
for file in student_files:
|
||
|
# opening the file present in the current directory
|
||
|
with open(file, "r") as f:
|
||
|
student_notes.append(f.read())
|
||
|
results = Plagiarism_Checker(student_files, student_notes)
|
||
|
|
||
|
for result in results:
|
||
|
print("Result: ", result)
|