- A collection of not so obvious Python stuff you should know! [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/not_so_obvious_python_stuff.ipynb?create=1)]
- Python's scope resolution for variable names and the LEGB rule [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/scope_resolution_legb_rule.ipynb?create=1)]
- Using Cython with and without IPython magic [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/running_cython.ipynb)]
- Parallel processing via the multiprocessing module [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/multiprocessing_intro.ipynb?create=1)]
- Entry point: Data - using sci-packages to prepare data for Machine Learning tasks and other data analyses [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/python_data_entry_point.ipynb?create=1)]
- Awesome things that you can do in IPython Notebooks (in progress) [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/awesome_things_ipynb.ipynb)]
- A collection of useful regular expressions [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/useful_regex.ipynb)]
*The algorithms category was moved to a separate GitHub repository [rasbt/algorithms_in_ipython_notebooks](https://github.com/rasbt/algorithms_in_ipython_notebooks)*
- Linear regression via the least squares fit method [[IPython nb](http://nbviewer.ipython.org/github/rasbt/algorithms_in_ipython_notebooks/blob/master/ipython_nbs/statistics/linregr_least_squares_fit.ipynb?create=1)]
- Dixon's Q test to identify outliers for small sample sizes [[IPython nb](http://nbviewer.ipython.org/github/rasbt/algorithms_in_ipython_notebooks/blob/master/ipython_nbs/statistics/dixon_q_test.ipynb?create=1)]
*The benchmark category was moved to a separate GitHub repository [One-Python-benchmark-per-day](https://github.com/rasbt/One-Python-benchmark-per-day)*
- **2** - Calculating sample means [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day2_mean_values.ipynb)]
- **3** - 6 different ways to count elements using a dict [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day3_dictionary_counting.ipynb)]
- **4** - Python vs. Cython vs. Numba [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day4_python_cython_numba.ipynb)]
- **4.2** - (C)Python compilers - Cython vs. Numba vs. Parakeet [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day4_2_cython_numba_parakeet.ipynb)]
- **5** - Comparing 9 ways for flattening lists of sublists [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day5_flattening_lists.ipynb)]
- **6** - Determining if a string is a number [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day6_string_is_number.ipynb)]
- **7** - Speeding up NumPy array expressions with Numexpr [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day7_numpy_numexpr.ipynb)]
- **8** - Calculating square roots and exponents [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day8_sqrt_and_exp.ipynb)]
- **9** - The most Pythonic way to check if a string ends with a particular substring [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day9_string_endswith.ipynb)]
- **10** - Cython - Bridging the gap between Python and Fortran [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day10_fortran_lstsqr.ipynb)]
- **11** - The `deque` container data type [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day11_deque_container.ipynb)]
- **12** - Lightning fast insertion into sorted lists via the `bisect` module [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day12_insert_into_sorted_list.ipynb)]
- **13** - Parallel processing via the multiprocessing module [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/multiprocessing_intro.ipynb)]
- [IPython magic function %watermark](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/ipython_magic/watermark.ipynb) - for printing date- and time-stamps and various system info
- [PyPI - the Python Package Index](https://pypi.python.org/pypi) - the official repository for all open source Python modules and packages
- [PEP 8](http://legacy.python.org/dev/peps/pep-0008/) - The official style guide for Python code
**// News**
- [Python subreddit](http://www.reddit.com/r/Python/) - my favorite resource to catch up with Python news and great Python-related articles
- [Python community on Google+](https://plus.google.com/communities/103393744324769547228) - a nice and friendly community to share and discuss everything about Python
- [Python Weekly](http://www.pythonweekly.com) - A free weekly newsletter featuring curated news, articles, new releases, jobs etc. related to Python
**// Resources for learning Python**
- [Learn Python The Hard Way](http://learnpythonthehardway.org/book/) - one of the most popular and recommended resources for learning Python
- [Dive Into Python](http://www.diveintopython.net) / [Dive Into Python 3](http://getpython3.com/diveintopython3/) - a free Python book for experienced programmers
- [The Hitchhiker’s Guide to Python](http://docs.python-guide.org/en/latest/) - a free best-practice handbook for both novices and experts
- [Think Python - How to Think Like a Computer Scientist](http://www.greenteapress.com/thinkpython/) - an introduction for beginners starting with basic concepts of programming
**// My favorite Python projects and packages**
- [The IPython Notebook](http://ipython.org/notebook.html) - an interactive computational environment for combining code execution, documentation (with Markdown and LateX support), inline plots, and rich media all in one document.
- [NumPy](http://www.numpy.org) - a library for multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays
- [SciPy](http://www.scipy.org) - a library that provides various useful functions for numerical computing, such as modules for optimization, linear algebra, integration, interpolation, ...
- [pandas](http://pandas.pydata.org) - high-performance, easy-to-use data structures and data analysis tools build on top of Numpy