python_reference/README.md
2015-01-24 11:02:44 -05:00

223 lines
12 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

### A collection of useful scripts, tutorials, and other Python-related things
<br>
<img src="./Images/python-logo-master-v3-TM-flattened.png" alt="">
<div style="height:100px;"></div>
- [// Python tips and tutorials](#-python-tips-and-tutorials)
- [// Python and the web](#-python-and-the-web)
- [// Algorithms](#-algorithms)
- [// Plotting and Visualization](#-plotting-and-visualization)
- [// Benchmarks](#-benchmarks)
- [// Python and "Data Science"](#-python-and-data-science)
- [// Other](#-other)
- [// Useful scripts and snippets](#-useful-scripts-and-snippets)
- [// Links](#-links)
<div style="height:100px;"></div>
###// Python tips and tutorials
[[back to top](#a-collection-of-useful-scripts-tutorials-and-other-python-related-things)]
- A collection of not so obvious Python stuff you should know! [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/not_so_obvious_python_stuff.ipynb?create=1)]
- Python's scope resolution for variable names and the LEGB rule [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/scope_resolution_legb_rule.ipynb?create=1)]
- Key differences between Python 2.x and Python 3.x [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/key_differences_between_python_2_and_3.ipynb?create=1)]
- A thorough guide to SQLite database operations in Python [[Markdown](./tutorials/sqlite3_howto/README.md)]
- Unit testing in Python - Why we want to make it a habit [[Markdown](./tutorials/unit_testing.md)]
- Installing Scientific Packages for Python3 on MacOS 10.9 Mavericks [[Markdown](./tutorials/installing_scientific_packages.md)]
- Sorting CSV files using the Python csv module [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/sorting_csvs.ipynb)]
- Using Cython with and without IPython magic [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/running_cython.ipynb)]
- Parallel processing via the multiprocessing module [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/multiprocessing_intro.ipynb?create=1)]
- Entry point: Data - using sci-packages to prepare data for Machine Learning tasks and other data analyses [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/python_data_entry_point.ipynb?create=1)]
- Awesome things that you can do in IPython Notebooks (in progress) [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/awesome_things_ipynb.ipynb)]
- A collection of useful regular expressions [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/useful_regex.ipynb)]
- Quick guide for dealing with missing numbers in NumPy [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/numpy_nan_quickguide.ipynb)]
- A random collection of useful Python snippets [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/python_patterns/patterns.ipynb)]
- Things in pandas I wish I'd had known earlier [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/things_in_pandas.ipynb)]
<br>
###// Python and the web
[[back to top](#a-collection-of-useful-scripts-tutorials-and-other-python-related-things)]
- Creating internal links in IPython Notebooks and Markdown docs [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/table_of_contents_ipython.ipynb)]
- Converting Markdown to HTML and adding Python syntax highlighting [[Markdown](./tutorials/markdown_syntax_highlighting/README.md)]
<br>
###// Algorithms
[[back to top](#a-collection-of-useful-scripts-tutorials-and-other-python-related-things)]
*The algorithms category has been moved to a separate GitHub repository [rasbt/algorithms_in_ipython_notebooks](https://github.com/rasbt/algorithms_in_ipython_notebooks)*
- Sorting Algorithms [[IPython nb](http://nbviewer.ipython.org/github/rasbt/algorithms_in_ipython_notebooks/blob/master/ipython_nbs/sorting/sorting_algorithms.ipynb?create=1)]
- Linear regression via the least squares fit method [[IPython nb](http://nbviewer.ipython.org/github/rasbt/algorithms_in_ipython_notebooks/blob/master/ipython_nbs/statistics/linregr_least_squares_fit.ipynb?create=1)]
- Dixon's Q test to identify outliers for small sample sizes [[IPython nb](http://nbviewer.ipython.org/github/rasbt/algorithms_in_ipython_notebooks/blob/master/ipython_nbs/statistics/dixon_q_test.ipynb?create=1)]
- Sequential Selection Algorithms [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/sorting_csvs.ipynb)]
- Counting points inside a hypercube [[IPython nb](http://nbviewer.ipython.org/github/rasbt/algorithms_in_ipython_notebooks/blob/master/ipython_nbs/geometry/points_in_hybercube.ipynb)]
<br>
###// Plotting and Visualization
[[back to top](#a-collection-of-useful-scripts-tutorials-and-other-python-related-things)]
*The matplotlib-gallery in IPython notebooks has been moved to a separate GitHub repository [matplotlib-gallery](https://github.com/rasbt/matplotlib-gallery)*
**Featured articles**:
- Preparing Plots for Publication [[IPython nb](http://nbviewer.ipython.org/github/rasbt/matplotlib-gallery/blob/master/ipynb/publication.ipynb)]
<br>
###// Benchmarks
[[back to top](#a-collection-of-useful-scripts-tutorials-and-other-python-related-things)]
- Simple tricks to speed up the sum calculation in pandas [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/benchmarks/pandas_sum_tricks.ipynb)]
<br>
*More benchmarks can be found in the separate GitHub repository [One-Python-benchmark-per-day](https://github.com/rasbt/One-Python-benchmark-per-day)*
**Featured articles**:
- (C)Python compilers - Cython vs. Numba vs. Parakeet [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day4_2_cython_numba_parakeet.ipynb)]
- Just-in-time compilers for NumPy array expressions [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day7_2_jit_numpy.ipynb)]
- Cython - Bridging the gap between Python and Fortran [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day10_fortran_lstsqr.ipynb)]
- Parallel processing via the multiprocessing module [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/multiprocessing_intro.ipynb)]
- Vectorizing a classic for-loop in NumPy [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day16_numpy_vectorization.ipynb)]
<br>
###// Python and "Data Science"
[[back to top](#a-collection-of-useful-scripts-tutorials-and-other-python-related-things)]
*The "data science"-related posts have been moved to a separate GitHub repository [pattern_classification](https://github.com/rasbt/pattern_classification)*
**Featured articles**:
- Entry Point: Data - Using Python's sci-packages to prepare data for Machine Learning tasks and other data analyses [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/python_data_entry_point.ipynb)]
- About Feature Scaling: Standardization and Min-Max-Scaling (Normalization) [[IPython nb](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/preprocessing/about_standardization_normalization.ipynb)]
- Principal Component Analysis (PCA) [[IPython nb](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/dimensionality_reduction/projection/principal_component_analysis.ipynb)]
- Linear Discriminant Analysis (LDA) [[IPython nb](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/dimensionality_reduction/projection/linear_discriminant_analysis.ipynb)]
- Kernel density estimation via the Parzen-window technique [[IPython nb](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/parameter_estimation_techniques/parzen_window_technique.ipynb)]
<br>
###// Useful scripts and snippets
[[back to top](#a-collection-of-useful-scripts-tutorials-and-other-python-related-things)]
- [watermark](https://github.com/rasbt/watermark) - An IPython magic extension for printing date and time stamps, version numbers, and hardware information.
- [Shell script](./useful_scripts/prepend_python_shebang.sh) For prepending Python-shebangs to .py files.
- Convert 'tab-delimited' to 'comma-separated' CSV files [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/useful_scripts/fix_tab_csv.ipynb)]
- A random string generator [function](./useful_scripts/random_string_generator.py)
<br>
###// Links
[[back to top](#a-collection-of-useful-scripts-tutorials-and-other-python-related-things)]
- [PyPI - the Python Package Index](https://pypi.python.org/pypi) - The official repository for all open source Python modules and packages.
- [PEP 8](http://legacy.python.org/dev/peps/pep-0008/) - The official style guide for Python code.
<br>
**// News**
- [Python subreddit](http://www.reddit.com/r/Python/) - My favorite resource to catch up with Python news and great Python-related articles.
- [Python community on Google+](https://plus.google.com/communities/103393744324769547228) - A nice and friendly community to share and discuss everything about Python.
- [Python Weekly](http://www.pythonweekly.com) - A free weekly newsletter featuring curated news, articles, new releases, jobs etc. related to Python.
<br>
**// Resources for learning Python**
- [Learn Python The Hard Way](http://learnpythonthehardway.org/book/) - The popular and probably most recommended resource for learning Python.
- [Dive Into Python](http://www.diveintopython.net) / [Dive Into Python 3](http://getpython3.com/diveintopython3/) - A free Python book for experienced programmers.
- [The Hitchhikers Guide to Python](http://docs.python-guide.org/en/latest/) - A free best-practice handbook for both novices and experts.
- [Think Python - How to Think Like a Computer Scientist](http://www.greenteapress.com/thinkpython/) - An introduction for beginners starting with basic concepts of programming.
- [Python Patterns](http://matthiaseisen.com/pp/) - A directory of proven, reusable solutions to common programming problems.
<br>
**// My favorite Python projects and packages**
- [The IPython Notebook](http://ipython.org/notebook.html) - An interactive computational environment for combining code execution, documentation (with Markdown and LateX support), inline plots, and rich media all in one document.
- [matplotlib](http://matplotlib.org) - Python's favorite plotting library.
- [NumPy](http://www.numpy.org) - A library for multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays.
- [SciPy](http://www.scipy.org) - A library that provides various useful functions for numerical computing, such as modules for optimization, linear algebra, integration, interpolation, ...
- [pandas](http://pandas.pydata.org) - High-performance, easy-to-use data structures and data analysis tools build on top of NumPy.
- [Cython](http://cython.org) - C-extensions for Python, an optimizing static compiler to combine Python and C code.
- [Numba](http://numba.pydata.org) - A just-in-time specializing compiler which compiles annotated Python and NumPy code to LLVM (through decorators)
- [scikit-learn](http://scikit-learn.org/stable/) - A powerful machine learning library for Python and tools for efficient data mining and analysis.