Python/machine_learning/ridge_regression/model.py

75 lines
2.3 KiB
Python
Raw Normal View History

2024-10-23 13:57:43 +00:00
import numpy as np
import pandas as pd
2024-10-23 14:07:10 +00:00
2024-10-23 13:57:43 +00:00
class RidgeRegression:
2024-10-23 14:07:10 +00:00
def __init__(self, alpha=0.001, regularization_param=0.1, num_iterations=1000):
2024-10-23 13:57:43 +00:00
self.alpha = alpha
2024-10-23 14:07:10 +00:00
self.regularization_param = regularization_param
self.num_iterations = num_iterations
2024-10-23 13:57:43 +00:00
self.theta = None
2024-10-23 14:07:10 +00:00
2024-10-23 13:57:43 +00:00
def feature_scaling(self, X):
mean = np.mean(X, axis=0)
std = np.std(X, axis=0)
2024-10-23 14:07:10 +00:00
2024-10-23 13:57:43 +00:00
# avoid division by zero for constant features (std = 0)
std[std == 0] = 1 # set std=1 for constant features to avoid NaN
2024-10-23 14:07:10 +00:00
2024-10-23 13:57:43 +00:00
X_scaled = (X - mean) / std
return X_scaled, mean, std
2024-10-23 14:07:10 +00:00
2024-10-23 13:57:43 +00:00
def fit(self, X, y):
X_scaled, mean, std = self.feature_scaling(X)
m, n = X_scaled.shape
self.theta = np.zeros(n) # initializing weights to zeros
2024-10-23 14:07:10 +00:00
for i in range(self.num_iterations):
2024-10-23 13:57:43 +00:00
predictions = X_scaled.dot(self.theta)
error = predictions - y
2024-10-23 14:07:10 +00:00
2024-10-23 13:57:43 +00:00
# computing gradient with L2 regularization
2024-10-23 14:07:10 +00:00
gradient = (X_scaled.T.dot(error) + self.regularization_param * self.theta) / m
2024-10-23 13:57:43 +00:00
self.theta -= self.alpha * gradient # updating weights
2024-10-23 14:07:10 +00:00
2024-10-23 13:57:43 +00:00
def predict(self, X):
X_scaled, _, _ = self.feature_scaling(X)
return X_scaled.dot(self.theta)
2024-10-23 14:07:10 +00:00
2024-10-23 13:57:43 +00:00
def compute_cost(self, X, y):
X_scaled, _, _ = self.feature_scaling(X)
m = len(y)
2024-10-23 14:07:10 +00:00
2024-10-23 13:57:43 +00:00
predictions = X_scaled.dot(self.theta)
2024-10-23 14:07:10 +00:00
cost = (1 / (2 * m)) * np.sum((predictions - y) ** 2) + (self.regularization_param / (2 * m)) * np.sum(self.theta**2)
2024-10-23 13:57:43 +00:00
return cost
2024-10-23 14:07:10 +00:00
2024-10-23 13:57:43 +00:00
def mean_absolute_error(self, y_true, y_pred):
return np.mean(np.abs(y_true - y_pred))
2024-10-23 14:07:10 +00:00
2024-10-23 13:57:43 +00:00
# Example usage
if __name__ == "__main__":
df = pd.read_csv("ADRvsRating.csv")
X = df[["Rating"]].values
y = df["ADR"].values
y = (y - np.mean(y)) / np.std(y)
# Add bias term (intercept) to the feature matrix
X = np.c_[np.ones(X.shape[0]), X]
# initialize and train the Ridge Regression model
2024-10-23 14:07:10 +00:00
model = RidgeRegression(alpha=0.01, regularization_param=0.1, num_iterations=1000)
2024-10-23 13:57:43 +00:00
model.fit(X, y)
# predictions
predictions = model.predict(X)
# results
print("Optimized Weights:", model.theta)
print("Cost:", model.compute_cost(X, y))
print("Mean Absolute Error:", model.mean_absolute_error(y, predictions))