2020-09-23 11:30:13 +00:00
|
|
|
def points_to_polynomial(coordinates: list[list[int]]) -> str:
|
2019-08-12 07:13:57 +00:00
|
|
|
"""
|
|
|
|
coordinates is a two dimensional matrix: [[x, y], [x, y], ...]
|
|
|
|
number of points you want to use
|
|
|
|
|
|
|
|
>>> print(points_to_polynomial([]))
|
2022-11-06 14:54:44 +00:00
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
ValueError: The program cannot work out a fitting polynomial.
|
2019-08-12 07:13:57 +00:00
|
|
|
>>> print(points_to_polynomial([[]]))
|
2022-11-06 14:54:44 +00:00
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
ValueError: The program cannot work out a fitting polynomial.
|
2019-08-12 07:13:57 +00:00
|
|
|
>>> print(points_to_polynomial([[1, 0], [2, 0], [3, 0]]))
|
|
|
|
f(x)=x^2*0.0+x^1*-0.0+x^0*0.0
|
|
|
|
>>> print(points_to_polynomial([[1, 1], [2, 1], [3, 1]]))
|
|
|
|
f(x)=x^2*0.0+x^1*-0.0+x^0*1.0
|
|
|
|
>>> print(points_to_polynomial([[1, 3], [2, 3], [3, 3]]))
|
|
|
|
f(x)=x^2*0.0+x^1*-0.0+x^0*3.0
|
|
|
|
>>> print(points_to_polynomial([[1, 1], [2, 2], [3, 3]]))
|
|
|
|
f(x)=x^2*0.0+x^1*1.0+x^0*0.0
|
|
|
|
>>> print(points_to_polynomial([[1, 1], [2, 4], [3, 9]]))
|
|
|
|
f(x)=x^2*1.0+x^1*-0.0+x^0*0.0
|
|
|
|
>>> print(points_to_polynomial([[1, 3], [2, 6], [3, 11]]))
|
|
|
|
f(x)=x^2*1.0+x^1*-0.0+x^0*2.0
|
|
|
|
>>> print(points_to_polynomial([[1, -3], [2, -6], [3, -11]]))
|
|
|
|
f(x)=x^2*-1.0+x^1*-0.0+x^0*-2.0
|
|
|
|
>>> print(points_to_polynomial([[1, 5], [2, 2], [3, 9]]))
|
|
|
|
f(x)=x^2*5.0+x^1*-18.0+x^0*18.0
|
|
|
|
"""
|
2022-11-02 18:40:25 +00:00
|
|
|
if len(coordinates) == 0 or not all(len(pair) == 2 for pair in coordinates):
|
2022-11-06 14:54:44 +00:00
|
|
|
raise ValueError("The program cannot work out a fitting polynomial.")
|
2022-11-02 18:40:25 +00:00
|
|
|
|
|
|
|
if len({tuple(pair) for pair in coordinates}) != len(coordinates):
|
2022-11-06 14:54:44 +00:00
|
|
|
raise ValueError("The program cannot work out a fitting polynomial.")
|
2019-08-12 07:13:57 +00:00
|
|
|
|
2022-11-02 18:40:25 +00:00
|
|
|
set_x = {x for x, _ in coordinates}
|
|
|
|
if len(set_x) == 1:
|
|
|
|
return f"x={coordinates[0][0]}"
|
|
|
|
|
|
|
|
if len(set_x) != len(coordinates):
|
2022-11-06 14:54:44 +00:00
|
|
|
raise ValueError("The program cannot work out a fitting polynomial.")
|
2019-08-12 07:13:57 +00:00
|
|
|
|
|
|
|
x = len(coordinates)
|
|
|
|
|
2022-11-02 18:40:25 +00:00
|
|
|
count_of_line = 0
|
|
|
|
matrix: list[list[float]] = []
|
|
|
|
# put the x and x to the power values in a matrix
|
|
|
|
while count_of_line < x:
|
|
|
|
count_in_line = 0
|
|
|
|
a = coordinates[count_of_line][0]
|
|
|
|
count_line: list[float] = []
|
|
|
|
while count_in_line < x:
|
|
|
|
count_line.append(a ** (x - (count_in_line + 1)))
|
|
|
|
count_in_line += 1
|
|
|
|
matrix.append(count_line)
|
|
|
|
count_of_line += 1
|
2019-08-12 07:13:57 +00:00
|
|
|
|
2022-11-02 18:40:25 +00:00
|
|
|
count_of_line = 0
|
|
|
|
# put the y values into a vector
|
|
|
|
vector: list[float] = []
|
|
|
|
while count_of_line < x:
|
|
|
|
vector.append(coordinates[count_of_line][1])
|
|
|
|
count_of_line += 1
|
2019-08-12 07:13:57 +00:00
|
|
|
|
2022-11-02 18:40:25 +00:00
|
|
|
count = 0
|
2019-08-12 07:13:57 +00:00
|
|
|
|
2022-11-02 18:40:25 +00:00
|
|
|
while count < x:
|
|
|
|
zahlen = 0
|
|
|
|
while zahlen < x:
|
|
|
|
if count == zahlen:
|
2019-08-12 07:13:57 +00:00
|
|
|
zahlen += 1
|
2022-11-02 18:40:25 +00:00
|
|
|
if zahlen == x:
|
|
|
|
break
|
|
|
|
bruch = matrix[zahlen][count] / matrix[count][count]
|
|
|
|
for counting_columns, item in enumerate(matrix[count]):
|
|
|
|
# manipulating all the values in the matrix
|
|
|
|
matrix[zahlen][counting_columns] -= item * bruch
|
|
|
|
# manipulating the values in the vector
|
|
|
|
vector[zahlen] -= vector[count] * bruch
|
|
|
|
zahlen += 1
|
|
|
|
count += 1
|
2019-08-12 07:13:57 +00:00
|
|
|
|
2022-11-02 18:40:25 +00:00
|
|
|
count = 0
|
|
|
|
# make solutions
|
|
|
|
solution: list[str] = []
|
|
|
|
while count < x:
|
|
|
|
solution.append(str(vector[count] / matrix[count][count]))
|
|
|
|
count += 1
|
2019-08-12 07:13:57 +00:00
|
|
|
|
2022-11-02 18:40:25 +00:00
|
|
|
count = 0
|
|
|
|
solved = "f(x)="
|
2019-08-12 07:13:57 +00:00
|
|
|
|
2022-11-02 18:40:25 +00:00
|
|
|
while count < x:
|
|
|
|
remove_e: list[str] = solution[count].split("E")
|
|
|
|
if len(remove_e) > 1:
|
|
|
|
solution[count] = f"{remove_e[0]}*10^{remove_e[1]}"
|
|
|
|
solved += f"x^{x - (count + 1)}*{solution[count]}"
|
|
|
|
if count + 1 != x:
|
|
|
|
solved += "+"
|
|
|
|
count += 1
|
2019-08-12 07:13:57 +00:00
|
|
|
|
2022-11-02 18:40:25 +00:00
|
|
|
return solved
|
2019-08-12 07:13:57 +00:00
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
print(points_to_polynomial([]))
|
|
|
|
print(points_to_polynomial([[]]))
|
|
|
|
print(points_to_polynomial([[1, 0], [2, 0], [3, 0]]))
|
|
|
|
print(points_to_polynomial([[1, 1], [2, 1], [3, 1]]))
|
|
|
|
print(points_to_polynomial([[1, 3], [2, 3], [3, 3]]))
|
|
|
|
print(points_to_polynomial([[1, 1], [2, 2], [3, 3]]))
|
|
|
|
print(points_to_polynomial([[1, 1], [2, 4], [3, 9]]))
|
|
|
|
print(points_to_polynomial([[1, 3], [2, 6], [3, 11]]))
|
|
|
|
print(points_to_polynomial([[1, -3], [2, -6], [3, -11]]))
|
|
|
|
print(points_to_polynomial([[1, 5], [2, 2], [3, 9]]))
|