Python/data_structures/heap/binomial_heap.py

402 lines
12 KiB
Python
Raw Normal View History

"""
Binomial Heap
Reference: Advanced Data Structures, Peter Brass
"""
class Node:
"""
Node in a doubly-linked binomial tree, containing:
- value
- size of left subtree
- link to left, right and parent nodes
"""
def __init__(self, val):
self.val = val
# Number of nodes in left subtree
self.left_tree_size = 0
self.left = None
self.right = None
self.parent = None
def merge_trees(self, other):
"""
In-place merge of two binomial trees of equal size.
Returns the root of the resulting tree
"""
2019-10-05 05:14:13 +00:00
assert self.left_tree_size == other.left_tree_size, "Unequal Sizes of Blocks"
if self.val < other.val:
other.left = self.right
other.parent = None
if self.right:
self.right.parent = other
self.right = other
2019-10-05 05:14:13 +00:00
self.left_tree_size = self.left_tree_size * 2 + 1
return self
else:
self.left = other.right
self.parent = None
if other.right:
other.right.parent = self
other.right = self
2019-10-05 05:14:13 +00:00
other.left_tree_size = other.left_tree_size * 2 + 1
return other
class BinomialHeap:
r"""
Min-oriented priority queue implemented with the Binomial Heap data
structure implemented with the BinomialHeap class. It supports:
- Insert element in a heap with n elements: Guaranteed logn, amoratized 1
- Merge (meld) heaps of size m and n: O(logn + logm)
- Delete Min: O(logn)
- Peek (return min without deleting it): O(1)
Example:
Create a random permutation of 30 integers to be inserted and 19 of them deleted
>>> import numpy as np
>>> permutation = np.random.permutation(list(range(30)))
Create a Heap and insert the 30 integers
__init__() test
>>> first_heap = BinomialHeap()
30 inserts - insert() test
>>> for number in permutation:
... first_heap.insert(number)
Size test
>>> first_heap.size
30
Deleting - delete() test
>>> [first_heap.delete_min() for _ in range(20)]
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
Create a new Heap
>>> second_heap = BinomialHeap()
>>> vals = [17, 20, 31, 34]
>>> for value in vals:
... second_heap.insert(value)
The heap should have the following structure:
17
/ \
# 31
/ \
20 34
/ \ / \
# # # #
preOrder() test
>>> " ".join(str(x) for x in second_heap.pre_order())
"(17, 0) ('#', 1) (31, 1) (20, 2) ('#', 3) ('#', 3) (34, 2) ('#', 3) ('#', 3)"
printing Heap - __str__() test
>>> print(second_heap)
17
-#
-31
--20
---#
---#
--34
---#
---#
mergeHeaps() test
>>>
>>> merged = second_heap.merge_heaps(first_heap)
>>> merged.peek()
17
values in merged heap; (merge is inplace)
>>> results = []
>>> while not first_heap.is_empty():
... results.append(first_heap.delete_min())
>>> results
[17, 20, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 31, 34]
"""
2019-10-05 05:14:13 +00:00
def __init__(self, bottom_root=None, min_node=None, heap_size=0):
self.size = heap_size
self.bottom_root = bottom_root
self.min_node = min_node
def merge_heaps(self, other):
"""
In-place merge of two binomial heaps.
Both of them become the resulting merged heap
"""
# Empty heaps corner cases
if other.size == 0:
return None
if self.size == 0:
self.size = other.size
self.bottom_root = other.bottom_root
self.min_node = other.min_node
return None
# Update size
self.size = self.size + other.size
# Update min.node
if self.min_node.val > other.min_node.val:
self.min_node = other.min_node
# Merge
# Order roots by left_subtree_size
combined_roots_list = []
i, j = self.bottom_root, other.bottom_root
while i or j:
2019-10-05 05:14:13 +00:00
if i and ((not j) or i.left_tree_size < j.left_tree_size):
combined_roots_list.append((i, True))
i = i.parent
else:
combined_roots_list.append((j, False))
j = j.parent
# Insert links between them
for i in range(len(combined_roots_list) - 1):
2019-10-05 05:14:13 +00:00
if combined_roots_list[i][1] != combined_roots_list[i + 1][1]:
combined_roots_list[i][0].parent = combined_roots_list[i + 1][0]
combined_roots_list[i + 1][0].left = combined_roots_list[i][0]
# Consecutively merge roots with same left_tree_size
i = combined_roots_list[0][0]
while i.parent:
if (
2019-10-05 05:14:13 +00:00
(i.left_tree_size == i.parent.left_tree_size) and (not i.parent.parent)
) or (
i.left_tree_size == i.parent.left_tree_size
2019-10-05 05:14:13 +00:00
and i.left_tree_size != i.parent.parent.left_tree_size
):
# Neighbouring Nodes
previous_node = i.left
next_node = i.parent.parent
# Merging trees
i = i.merge_trees(i.parent)
# Updating links
i.left = previous_node
i.parent = next_node
if previous_node:
previous_node.parent = i
if next_node:
next_node.left = i
else:
i = i.parent
# Updating self.bottom_root
while i.left:
i = i.left
self.bottom_root = i
# Update other
other.size = self.size
other.bottom_root = self.bottom_root
other.min_node = self.min_node
# Return the merged heap
return self
def insert(self, val):
"""
insert a value in the heap
"""
if self.size == 0:
self.bottom_root = Node(val)
self.size = 1
self.min_node = self.bottom_root
else:
# Create new node
new_node = Node(val)
# Update size
self.size += 1
# update min_node
if val < self.min_node.val:
self.min_node = new_node
# Put new_node as a bottom_root in heap
self.bottom_root.left = new_node
new_node.parent = self.bottom_root
self.bottom_root = new_node
# Consecutively merge roots with same left_tree_size
while (
self.bottom_root.parent
and self.bottom_root.left_tree_size
== self.bottom_root.parent.left_tree_size
):
# Next node
next_node = self.bottom_root.parent.parent
# Merge
self.bottom_root = self.bottom_root.merge_trees(self.bottom_root.parent)
# Update Links
self.bottom_root.parent = next_node
self.bottom_root.left = None
if next_node:
next_node.left = self.bottom_root
def peek(self):
"""
return min element without deleting it
"""
return self.min_node.val
def is_empty(self):
return self.size == 0
def delete_min(self):
"""
delete min element and return it
"""
# assert not self.isEmpty(), "Empty Heap"
# Save minimal value
min_value = self.min_node.val
# Last element in heap corner case
if self.size == 1:
# Update size
self.size = 0
# Update bottom root
self.bottom_root = None
# Update min_node
self.min_node = None
return min_value
# No right subtree corner case
# The structure of the tree implies that this should be the bottom root
# and there is at least one other root
if self.min_node.right is None:
# Update size
self.size -= 1
# Update bottom root
self.bottom_root = self.bottom_root.parent
self.bottom_root.left = None
# Update min_node
self.min_node = self.bottom_root
i = self.bottom_root.parent
while i:
if i.val < self.min_node.val:
self.min_node = i
i = i.parent
return min_value
# General case
# Find the BinomialHeap of the right subtree of min_node
bottom_of_new = self.min_node.right
bottom_of_new.parent = None
min_of_new = bottom_of_new
size_of_new = 1
# Size, min_node and bottom_root
while bottom_of_new.left:
size_of_new = size_of_new * 2 + 1
bottom_of_new = bottom_of_new.left
if bottom_of_new.val < min_of_new.val:
min_of_new = bottom_of_new
# Corner case of single root on top left path
2019-10-05 05:14:13 +00:00
if (not self.min_node.left) and (not self.min_node.parent):
self.size = size_of_new
self.bottom_root = bottom_of_new
self.min_node = min_of_new
# print("Single root, multiple nodes case")
return min_value
# Remaining cases
# Construct heap of right subtree
new_heap = BinomialHeap(
2019-10-05 05:14:13 +00:00
bottom_root=bottom_of_new, min_node=min_of_new, heap_size=size_of_new
)
# Update size
self.size = self.size - 1 - size_of_new
# Neighbour nodes
previous_node = self.min_node.left
next_node = self.min_node.parent
# Initialize new bottom_root and min_node
self.min_node = previous_node or next_node
self.bottom_root = next_node
# Update links of previous_node and search below for new min_node and
# bottom_root
if previous_node:
previous_node.parent = next_node
# Update bottom_root and search for min_node below
self.bottom_root = previous_node
self.min_node = previous_node
while self.bottom_root.left:
self.bottom_root = self.bottom_root.left
if self.bottom_root.val < self.min_node.val:
self.min_node = self.bottom_root
if next_node:
next_node.left = previous_node
# Search for new min_node above min_node
i = next_node
while i:
if i.val < self.min_node.val:
self.min_node = i
i = i.parent
# Merge heaps
self.merge_heaps(new_heap)
return min_value
def pre_order(self):
"""
Returns the Pre-order representation of the heap including
values of nodes plus their level distance from the root;
Empty nodes appear as #
"""
# Find top root
top_root = self.bottom_root
while top_root.parent:
top_root = top_root.parent
# preorder
heap_pre_order = []
self.__traversal(top_root, heap_pre_order)
return heap_pre_order
def __traversal(self, curr_node, preorder, level=0):
"""
Pre-order traversal of nodes
"""
if curr_node:
preorder.append((curr_node.val, level))
2019-10-05 05:14:13 +00:00
self.__traversal(curr_node.left, preorder, level + 1)
self.__traversal(curr_node.right, preorder, level + 1)
else:
preorder.append(("#", level))
def __str__(self):
"""
Overwriting str for a pre-order print of nodes in heap;
Performance is poor, so use only for small examples
"""
if self.is_empty():
return ""
preorder_heap = self.pre_order()
2019-10-05 05:14:13 +00:00
return "\n".join(("-" * level + str(value)) for value, level in preorder_heap)
# Unit Tests
if __name__ == "__main__":
import doctest
doctest.testmod()