2023-10-16 16:46:44 +00:00
|
|
|
"""
|
|
|
|
The diameter/width of a tree is defined as the number of nodes on the longest path
|
|
|
|
between two end nodes.
|
|
|
|
"""
|
2024-03-13 06:52:41 +00:00
|
|
|
|
2023-10-16 16:46:44 +00:00
|
|
|
from __future__ import annotations
|
|
|
|
|
|
|
|
from dataclasses import dataclass
|
|
|
|
|
|
|
|
|
|
|
|
@dataclass
|
|
|
|
class Node:
|
|
|
|
data: int
|
|
|
|
left: Node | None = None
|
|
|
|
right: Node | None = None
|
|
|
|
|
|
|
|
def depth(self) -> int:
|
|
|
|
"""
|
|
|
|
>>> root = Node(1)
|
|
|
|
>>> root.depth()
|
|
|
|
1
|
|
|
|
>>> root.left = Node(2)
|
|
|
|
>>> root.depth()
|
|
|
|
2
|
|
|
|
>>> root.left.depth()
|
|
|
|
1
|
|
|
|
>>> root.right = Node(3)
|
|
|
|
>>> root.depth()
|
|
|
|
2
|
|
|
|
"""
|
|
|
|
left_depth = self.left.depth() if self.left else 0
|
|
|
|
right_depth = self.right.depth() if self.right else 0
|
|
|
|
return max(left_depth, right_depth) + 1
|
|
|
|
|
|
|
|
def diameter(self) -> int:
|
|
|
|
"""
|
|
|
|
>>> root = Node(1)
|
|
|
|
>>> root.diameter()
|
|
|
|
1
|
|
|
|
>>> root.left = Node(2)
|
|
|
|
>>> root.diameter()
|
|
|
|
2
|
|
|
|
>>> root.left.diameter()
|
|
|
|
1
|
|
|
|
>>> root.right = Node(3)
|
|
|
|
>>> root.diameter()
|
|
|
|
3
|
|
|
|
"""
|
|
|
|
left_depth = self.left.depth() if self.left else 0
|
|
|
|
right_depth = self.right.depth() if self.right else 0
|
|
|
|
return left_depth + right_depth + 1
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
from doctest import testmod
|
|
|
|
|
|
|
|
testmod()
|
|
|
|
root = Node(1)
|
|
|
|
root.left = Node(2)
|
|
|
|
root.right = Node(3)
|
|
|
|
root.left.left = Node(4)
|
|
|
|
root.left.right = Node(5)
|
|
|
|
r"""
|
|
|
|
Constructed binary tree is
|
|
|
|
1
|
|
|
|
/ \
|
|
|
|
2 3
|
|
|
|
/ \
|
|
|
|
4 5
|
|
|
|
"""
|
|
|
|
print(f"{root.diameter() = }") # 4
|
|
|
|
print(f"{root.left.diameter() = }") # 3
|
|
|
|
print(f"{root.right.diameter() = }") # 1
|