mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-03-27 17:06:44 +00:00
resolved conflicts
This commit is contained in:
commit
38764378d4
@ -6,16 +6,18 @@ class RidgeRegression:
|
|||||||
def __init__(self,
|
def __init__(self,
|
||||||
alpha: float = 0.001,
|
alpha: float = 0.001,
|
||||||
regularization_param: float = 0.1,
|
regularization_param: float = 0.1,
|
||||||
num_iterations:int=1000) -> None:
|
num_iterations: int = 1000,
|
||||||
|
) -> None:
|
||||||
self.alpha: float = alpha
|
self.alpha: float = alpha
|
||||||
self.regularization_param: float = regularization_param
|
self.regularization_param: float = regularization_param
|
||||||
self.num_iterations: int = num_iterations
|
self.num_iterations: int = num_iterations
|
||||||
self.theta: np.ndarray = None
|
self.theta: np.ndarray = None
|
||||||
|
|
||||||
|
def feature_scaling(
|
||||||
def feature_scaling(self, x:np.ndarray)-> tuple[np.ndarray, np.ndarray, np.ndarray]:
|
self, X: np.ndarray
|
||||||
mean = np.mean(x, axis=0)
|
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
|
||||||
std = np.std(x, axis=0)
|
mean = np.mean(X, axis=0)
|
||||||
|
std = np.std(X, axis=0)
|
||||||
|
|
||||||
# avoid division by zero for constant features (std = 0)
|
# avoid division by zero for constant features (std = 0)
|
||||||
std[std == 0] = 1 # set std=1 for constant features to avoid NaN
|
std[std == 0] = 1 # set std=1 for constant features to avoid NaN
|
||||||
@ -23,7 +25,6 @@ class RidgeRegression:
|
|||||||
x_scaled = (x - mean) / std
|
x_scaled = (x - mean) / std
|
||||||
return x_scaled, mean, std
|
return x_scaled, mean, std
|
||||||
|
|
||||||
|
|
||||||
def fit(self, x: np.ndarray, y: np.ndarray) -> None:
|
def fit(self, x: np.ndarray, y: np.ndarray) -> None:
|
||||||
x_scaled, mean, std = self.feature_scaling(x)
|
x_scaled, mean, std = self.feature_scaling(x)
|
||||||
m, n = x_scaled.shape
|
m, n = x_scaled.shape
|
||||||
@ -39,11 +40,9 @@ class RidgeRegression:
|
|||||||
) / m
|
) / m
|
||||||
self.theta -= self.alpha * gradient # updating weights
|
self.theta -= self.alpha * gradient # updating weights
|
||||||
|
|
||||||
|
def predict(self, X: np.ndarray) -> np.ndarray:
|
||||||
def predict(self, x:np.ndarray) -> np.ndarray:
|
X_scaled, _, _ = self.feature_scaling(X)
|
||||||
x_scaled, _, _ = self.feature_scaling(x)
|
return X_scaled.dot(self.theta)
|
||||||
return x_scaled.dot(self.theta)
|
|
||||||
|
|
||||||
|
|
||||||
def compute_cost(self, x: np.ndarray, y: np.ndarray) -> float:
|
def compute_cost(self, x: np.ndarray, y: np.ndarray) -> float:
|
||||||
x_scaled, _, _ = self.feature_scaling(x)
|
x_scaled, _, _ = self.feature_scaling(x)
|
||||||
@ -56,7 +55,6 @@ class RidgeRegression:
|
|||||||
) * np.sum(self.theta**2)
|
) * np.sum(self.theta**2)
|
||||||
return cost
|
return cost
|
||||||
|
|
||||||
|
|
||||||
def mean_absolute_error(self, y_true: np.ndarray, y_pred: np.ndarray) -> float:
|
def mean_absolute_error(self, y_true: np.ndarray, y_pred: np.ndarray) -> float:
|
||||||
return np.mean(np.abs(y_true - y_pred))
|
return np.mean(np.abs(y_true - y_pred))
|
||||||
|
|
||||||
|
Loading…
x
Reference in New Issue
Block a user