mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 16:27:02 +00:00
commit
da449e0271
305
Neural_Network/convolution_neural_network.py
Normal file
305
Neural_Network/convolution_neural_network.py
Normal file
|
@ -0,0 +1,305 @@
|
|||
#-*- coding: utf-8 -*-
|
||||
|
||||
'''
|
||||
- - - - - -- - - - - - - - - - - - - - - - - - - - - - -
|
||||
Name - - CNN - Convolution Neural Network For Photo Recognizing
|
||||
Goal - - Recognize Handing Writting Word Photo
|
||||
Detail:Total 5 layers neural network
|
||||
* Convolution layer
|
||||
* Pooling layer
|
||||
* Input layer layer of BP
|
||||
* Hiden layer of BP
|
||||
* Output layer of BP
|
||||
Author: Stephen Lee
|
||||
Github: 245885195@qq.com
|
||||
Date: 2017.9.20
|
||||
- - - - - -- - - - - - - - - - - - - - - - - - - - - - -
|
||||
'''
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
class CNN():
|
||||
|
||||
def __init__(self,conv1_get,size_p1,bp_num1,bp_num2,bp_num3,rate_w=0.2,rate_t=0.2):
|
||||
'''
|
||||
:param conv1_get: [a,c,d],size, number, step of convolution kernel
|
||||
:param size_p1: pooling size
|
||||
:param bp_num1: units number of flatten layer
|
||||
:param bp_num2: units number of hidden layer
|
||||
:param bp_num3: units number of output layer
|
||||
:param rate_w: rate of weight learning
|
||||
:param rate_t: rate of threshold learning
|
||||
'''
|
||||
self.num_bp1 = bp_num1
|
||||
self.num_bp2 = bp_num2
|
||||
self.num_bp3 = bp_num3
|
||||
self.conv1 = conv1_get[:2]
|
||||
self.step_conv1 = conv1_get[2]
|
||||
self.size_pooling1 = size_p1
|
||||
self.rate_weight = rate_w
|
||||
self.rate_thre = rate_t
|
||||
self.w_conv1 = [np.mat(-1*np.random.rand(self.conv1[0],self.conv1[0])+0.5) for i in range(self.conv1[1])]
|
||||
self.wkj = np.mat(-1 * np.random.rand(self.num_bp3, self.num_bp2) + 0.5)
|
||||
self.vji = np.mat(-1*np.random.rand(self.num_bp2, self.num_bp1)+0.5)
|
||||
self.thre_conv1 = -2*np.random.rand(self.conv1[1])+1
|
||||
self.thre_bp2 = -2*np.random.rand(self.num_bp2)+1
|
||||
self.thre_bp3 = -2*np.random.rand(self.num_bp3)+1
|
||||
|
||||
|
||||
def save_model(self,save_path):
|
||||
#save model dict with pickle
|
||||
import pickle
|
||||
model_dic = {'num_bp1':self.num_bp1,
|
||||
'num_bp2':self.num_bp2,
|
||||
'num_bp3':self.num_bp3,
|
||||
'conv1':self.conv1,
|
||||
'step_conv1':self.step_conv1,
|
||||
'size_pooling1':self.size_pooling1,
|
||||
'rate_weight':self.rate_weight,
|
||||
'rate_thre':self.rate_thre,
|
||||
'w_conv1':self.w_conv1,
|
||||
'wkj':self.wkj,
|
||||
'vji':self.vji,
|
||||
'thre_conv1':self.thre_conv1,
|
||||
'thre_bp2':self.thre_bp2,
|
||||
'thre_bp3':self.thre_bp3}
|
||||
with open(save_path, 'wb') as f:
|
||||
pickle.dump(model_dic, f)
|
||||
|
||||
print('Model saved: %s'% save_path)
|
||||
|
||||
@classmethod
|
||||
def ReadModel(cls,model_path):
|
||||
#read saved model
|
||||
import pickle
|
||||
with open(model_path, 'rb') as f:
|
||||
model_dic = pickle.load(f)
|
||||
|
||||
conv_get= model_dic.get('conv1')
|
||||
conv_get.append(model_dic.get('step_conv1'))
|
||||
size_p1 = model_dic.get('size_pooling1')
|
||||
bp1 = model_dic.get('num_bp1')
|
||||
bp2 = model_dic.get('num_bp2')
|
||||
bp3 = model_dic.get('num_bp3')
|
||||
r_w = model_dic.get('rate_weight')
|
||||
r_t = model_dic.get('rate_thre')
|
||||
#create model instance
|
||||
conv_ins = CNN(conv_get,size_p1,bp1,bp2,bp3,r_w,r_t)
|
||||
#modify model parameter
|
||||
conv_ins.w_conv1 = model_dic.get('w_conv1')
|
||||
conv_ins.wkj = model_dic.get('wkj')
|
||||
conv_ins.vji = model_dic.get('vji')
|
||||
conv_ins.thre_conv1 = model_dic.get('thre_conv1')
|
||||
conv_ins.thre_bp2 = model_dic.get('thre_bp2')
|
||||
conv_ins.thre_bp3 = model_dic.get('thre_bp3')
|
||||
return conv_ins
|
||||
|
||||
|
||||
def sig(self,x):
|
||||
return 1 / (1 + np.exp(-1*x))
|
||||
|
||||
def do_round(self,x):
|
||||
return round(x, 3)
|
||||
|
||||
def convolute(self,data,convs,w_convs,thre_convs,conv_step):
|
||||
#convolution process
|
||||
size_conv = convs[0]
|
||||
num_conv =convs[1]
|
||||
size_data = np.shape(data)[0]
|
||||
#get the data slice of original image data, data_focus
|
||||
data_focus = []
|
||||
for i_focus in range(0, size_data - size_conv + 1, conv_step):
|
||||
for j_focus in range(0, size_data - size_conv + 1, conv_step):
|
||||
focus = data[i_focus:i_focus + size_conv, j_focus:j_focus + size_conv]
|
||||
data_focus.append(focus)
|
||||
#caculate the feature map of every single kernel, and saved as list of matrix
|
||||
data_featuremap = []
|
||||
Size_FeatureMap = int((size_data - size_conv) / conv_step + 1)
|
||||
for i_map in range(num_conv):
|
||||
featuremap = []
|
||||
for i_focus in range(len(data_focus)):
|
||||
net_focus = np.sum(np.multiply(data_focus[i_focus], w_convs[i_map])) - thre_convs[i_map]
|
||||
featuremap.append(self.sig(net_focus))
|
||||
featuremap = np.asmatrix(featuremap).reshape(Size_FeatureMap, Size_FeatureMap)
|
||||
data_featuremap.append(featuremap)
|
||||
|
||||
#expanding the data slice to One dimenssion
|
||||
focus1_list = []
|
||||
for each_focus in data_focus:
|
||||
focus1_list.extend(self.Expand_Mat(each_focus))
|
||||
focus_list = np.asarray(focus1_list)
|
||||
return focus_list,data_featuremap
|
||||
|
||||
def pooling(self,featuremaps,size_pooling,type='average_pool'):
|
||||
#pooling process
|
||||
size_map = len(featuremaps[0])
|
||||
size_pooled = int(size_map/size_pooling)
|
||||
featuremap_pooled = []
|
||||
for i_map in range(len(featuremaps)):
|
||||
map = featuremaps[i_map]
|
||||
map_pooled = []
|
||||
for i_focus in range(0,size_map,size_pooling):
|
||||
for j_focus in range(0, size_map, size_pooling):
|
||||
focus = map[i_focus:i_focus + size_pooling, j_focus:j_focus + size_pooling]
|
||||
if type == 'average_pool':
|
||||
#average pooling
|
||||
map_pooled.append(np.average(focus))
|
||||
elif type == 'max_pooling':
|
||||
#max pooling
|
||||
map_pooled.append(np.max(focus))
|
||||
map_pooled = np.asmatrix(map_pooled).reshape(size_pooled,size_pooled)
|
||||
featuremap_pooled.append(map_pooled)
|
||||
return featuremap_pooled
|
||||
|
||||
def _expand(self,datas):
|
||||
#expanding three dimension data to one dimension list
|
||||
data_expanded = []
|
||||
for i in range(len(datas)):
|
||||
shapes = np.shape(datas[i])
|
||||
data_listed = datas[i].reshape(1,shapes[0]*shapes[1])
|
||||
data_listed = data_listed.getA().tolist()[0]
|
||||
data_expanded.extend(data_listed)
|
||||
data_expanded = np.asarray(data_expanded)
|
||||
return data_expanded
|
||||
|
||||
def _expand_mat(self,data_mat):
|
||||
#expanding matrix to one dimension list
|
||||
data_mat = np.asarray(data_mat)
|
||||
shapes = np.shape(data_mat)
|
||||
data_expanded = data_mat.reshape(1,shapes[0]*shapes[1])
|
||||
return data_expanded
|
||||
|
||||
def _calculate_gradient_from_pool(self,out_map,pd_pool,num_map,size_map,size_pooling):
|
||||
'''
|
||||
calcluate the gradient from the data slice of pool layer
|
||||
pd_pool: list of matrix
|
||||
out_map: the shape of data slice(size_map*size_map)
|
||||
return: pd_all: list of matrix, [num, size_map, size_map]
|
||||
'''
|
||||
pd_all = []
|
||||
i_pool = 0
|
||||
for i_map in range(num_map):
|
||||
pd_conv1 = np.ones((size_map, size_map))
|
||||
for i in range(0, size_map, size_pooling):
|
||||
for j in range(0, size_map, size_pooling):
|
||||
pd_conv1[i:i + size_pooling, j:j + size_pooling] = pd_pool[i_pool]
|
||||
i_pool = i_pool + 1
|
||||
pd_conv2 = np.multiply(pd_conv1,np.multiply(out_map[i_map],(1-out_map[i_map])))
|
||||
pd_all.append(pd_conv2)
|
||||
return pd_all
|
||||
|
||||
def trian(self,patterns,datas_train, datas_teach, n_repeat, error_accuracy,draw_e = bool):
|
||||
#model traning
|
||||
print('----------------------Start Training-------------------------')
|
||||
print(' - - Shape: Train_Data ',np.shape(datas_train))
|
||||
print(' - - Shape: Teach_Data ',np.shape(datas_teach))
|
||||
rp = 0
|
||||
all_mse = []
|
||||
mse = 10000
|
||||
while rp < n_repeat and mse >= error_accuracy:
|
||||
alle = 0
|
||||
print('-------------Learning Time %d--------------'%rp)
|
||||
for p in range(len(datas_train)):
|
||||
#print('------------Learning Image: %d--------------'%p)
|
||||
data_train = np.asmatrix(datas_train[p])
|
||||
data_teach = np.asarray(datas_teach[p])
|
||||
data_focus1,data_conved1 = self.convolute(data_train,self.conv1,self.w_conv1,
|
||||
self.thre_conv1,conv_step=self.step_conv1)
|
||||
data_pooled1 = self.pooling(data_conved1,self.size_pooling1)
|
||||
shape_featuremap1 = np.shape(data_conved1)
|
||||
'''
|
||||
print(' -----original shape ', np.shape(data_train))
|
||||
print(' ---- after convolution ',np.shape(data_conv1))
|
||||
print(' -----after pooling ',np.shape(data_pooled1))
|
||||
'''
|
||||
data_bp_input = self._expand(data_pooled1)
|
||||
bp_out1 = data_bp_input
|
||||
|
||||
bp_net_j = np.dot(bp_out1,self.vji.T) - self.thre_bp2
|
||||
bp_out2 = self.sig(bp_net_j)
|
||||
bp_net_k = np.dot(bp_out2 ,self.wkj.T) - self.thre_bp3
|
||||
bp_out3 = self.sig(bp_net_k)
|
||||
|
||||
#--------------Model Leaning ------------------------
|
||||
# calcluate error and gradient---------------
|
||||
pd_k_all = np.multiply((data_teach - bp_out3), np.multiply(bp_out3, (1 - bp_out3)))
|
||||
pd_j_all = np.multiply(np.dot(pd_k_all,self.wkj), np.multiply(bp_out2, (1 - bp_out2)))
|
||||
pd_i_all = np.dot(pd_j_all,self.vji)
|
||||
|
||||
pd_conv1_pooled = pd_i_all / (self.size_pooling1*self.size_pooling1)
|
||||
pd_conv1_pooled = pd_conv1_pooled.T.getA().tolist()
|
||||
pd_conv1_all = self._calculate_gradient_from_pool(data_conved1,pd_conv1_pooled,shape_featuremap1[0],
|
||||
shape_featuremap1[1],self.size_pooling1)
|
||||
#weight and threshold learning process---------
|
||||
#convolution layer
|
||||
for k_conv in range(self.conv1[1]):
|
||||
pd_conv_list = self._expand_mat(pd_conv1_all[k_conv])
|
||||
delta_w = self.rate_weight * np.dot(pd_conv_list,data_focus1)
|
||||
|
||||
self.w_conv1[k_conv] = self.w_conv1[k_conv] + delta_w.reshape((self.conv1[0],self.conv1[0]))
|
||||
|
||||
self.thre_conv1[k_conv] = self.thre_conv1[k_conv] - np.sum(pd_conv1_all[k_conv]) * self.rate_thre
|
||||
#all connected layer
|
||||
self.wkj = self.wkj + pd_k_all.T * bp_out2 * self.rate_weight
|
||||
self.vji = self.vji + pd_j_all.T * bp_out1 * self.rate_weight
|
||||
self.thre_bp3 = self.thre_bp3 - pd_k_all * self.rate_thre
|
||||
self.thre_bp2 = self.thre_bp2 - pd_j_all * self.rate_thre
|
||||
# calculate the sum error of all single image
|
||||
errors = np.sum(abs((data_teach - bp_out3)))
|
||||
alle = alle + errors
|
||||
#print(' ----Teach ',data_teach)
|
||||
#print(' ----BP_output ',bp_out3)
|
||||
rp = rp + 1
|
||||
mse = alle/patterns
|
||||
all_mse.append(mse)
|
||||
def draw_error():
|
||||
yplot = [error_accuracy for i in range(int(n_repeat * 1.2))]
|
||||
plt.plot(all_mse, '+-')
|
||||
plt.plot(yplot, 'r--')
|
||||
plt.xlabel('Learning Times')
|
||||
plt.ylabel('All_mse')
|
||||
plt.grid(True, alpha=0.5)
|
||||
plt.show()
|
||||
print('------------------Training Complished---------------------')
|
||||
print(' - - Training epoch: ', rp, ' - - Mse: %.6f' % mse)
|
||||
if draw_e:
|
||||
draw_error()
|
||||
return mse
|
||||
|
||||
def predict(self,datas_test):
|
||||
#model predict
|
||||
produce_out = []
|
||||
print('-------------------Start Testing-------------------------')
|
||||
print(' - - Shape: Test_Data ',np.shape(datas_test))
|
||||
for p in range(len(datas_test)):
|
||||
data_test = np.asmatrix(datas_test[p])
|
||||
data_focus1, data_conved1 = self.convolute(data_test, self.conv1, self.w_conv1,
|
||||
self.thre_conv1, conv_step=self.step_conv1)
|
||||
data_pooled1 = self.pooling(data_conved1, self.size_pooling1)
|
||||
data_bp_input = self._expand(data_pooled1)
|
||||
|
||||
bp_out1 = data_bp_input
|
||||
bp_net_j = bp_out1 * self.vji.T - self.thre_bp2
|
||||
bp_out2 = self.sig(bp_net_j)
|
||||
bp_net_k = bp_out2 * self.wkj.T - self.thre_bp3
|
||||
bp_out3 = self.sig(bp_net_k)
|
||||
produce_out.extend(bp_out3.getA().tolist())
|
||||
res = [list(map(self.do_round,each)) for each in produce_out]
|
||||
return np.asarray(res)
|
||||
|
||||
def convolution(self,data):
|
||||
#return the data of image after convoluting process so we can check it out
|
||||
data_test = np.asmatrix(data)
|
||||
data_focus1, data_conved1 = self.convolute(data_test, self.conv1, self.w_conv1,
|
||||
self.thre_conv1, conv_step=self.step_conv1)
|
||||
data_pooled1 = self.pooling(data_conved1, self.size_pooling1)
|
||||
|
||||
return data_conved1,data_pooled1
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
pass
|
||||
'''
|
||||
I will put the example on other file
|
||||
'''
|
|
@ -9,7 +9,7 @@ BP neural network with three layers
|
|||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
class Bpnw():
|
||||
class Bpnn():
|
||||
|
||||
def __init__(self,n_layer1,n_layer2,n_layer3,rate_w=0.3,rate_t=0.3):
|
||||
'''
|
||||
|
@ -38,7 +38,7 @@ class Bpnw():
|
|||
def do_round(self,x):
|
||||
return round(x, 3)
|
||||
|
||||
def trian(self,patterns,data_train, data_teach, n_repeat, error_accuracy,draw_e = bool):
|
||||
def trian(self,patterns,data_train, data_teach, n_repeat, error_accuracy, draw_e=False):
|
||||
'''
|
||||
:param patterns: the number of patterns
|
||||
:param data_train: training data x; numpy.ndarray
|
||||
|
@ -49,9 +49,9 @@ class Bpnw():
|
|||
'''
|
||||
data_train = np.asarray(data_train)
|
||||
data_teach = np.asarray(data_teach)
|
||||
print('-------------------Start Training-------------------------')
|
||||
print(' - - Shape: Train_Data ',np.shape(data_train))
|
||||
print(' - - Shape: Teach_Data ',np.shape(data_teach))
|
||||
# print('-------------------Start Training-------------------------')
|
||||
# print(' - - Shape: Train_Data ',np.shape(data_train))
|
||||
# print(' - - Shape: Teach_Data ',np.shape(data_teach))
|
||||
rp = 0
|
||||
all_mse = []
|
||||
mse = 10000
|
||||
|
@ -95,9 +95,9 @@ class Bpnw():
|
|||
plt.ylabel('All_mse')
|
||||
plt.grid(True,alpha = 0.7)
|
||||
plt.show()
|
||||
print('------------------Training Complished---------------------')
|
||||
print(' - - Training epoch: ', rp, ' - - Mse: %.6f'%mse)
|
||||
print(' - - Last Output: ', final_out3)
|
||||
# print('------------------Training Complished---------------------')
|
||||
# print(' - - Training epoch: ', rp, ' - - Mse: %.6f'%mse)
|
||||
# print(' - - Last Output: ', final_out3)
|
||||
if draw_e:
|
||||
draw_error()
|
||||
|
||||
|
@ -108,9 +108,9 @@ class Bpnw():
|
|||
'''
|
||||
data_test = np.asarray(data_test)
|
||||
produce_out = []
|
||||
print('-------------------Start Testing-------------------------')
|
||||
print(' - - Shape: Test_Data ',np.shape(data_test))
|
||||
print(np.shape(data_test))
|
||||
# print('-------------------Start Testing-------------------------')
|
||||
# print(' - - Shape: Test_Data ',np.shape(data_test))
|
||||
# print(np.shape(data_test))
|
||||
for g in range(np.shape(data_test)[0]):
|
||||
|
||||
net_i = data_test[g]
|
||||
|
@ -127,8 +127,26 @@ class Bpnw():
|
|||
|
||||
|
||||
def main():
|
||||
#I will fish the mian function later
|
||||
pass
|
||||
#example data
|
||||
data_x = [[1,2,3,4],
|
||||
[5,6,7,8],
|
||||
[2,2,3,4],
|
||||
[7,7,8,8]]
|
||||
data_y = [[1,0,0,0],
|
||||
[0,1,0,0],
|
||||
[0,0,1,0],
|
||||
[0,0,0,1]]
|
||||
|
||||
test_x = [[1,2,3,4],
|
||||
[3,2,3,4]]
|
||||
|
||||
#building network model
|
||||
model = Bpnn(4,10,4)
|
||||
#training the model
|
||||
model.trian(patterns=4,data_train=data_x,data_teach=data_y,
|
||||
n_repeat=100,error_accuracy=0.1,draw_e=True)
|
||||
#predicting data
|
||||
model.predict(test_x)
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
|
Loading…
Reference in New Issue
Block a user