mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
Compare commits
13 Commits
be0679cdaa
...
6e8b5bf66e
Author | SHA1 | Date | |
---|---|---|---|
|
6e8b5bf66e | ||
|
e3bd7721c8 | ||
|
4204bf6d28 | ||
|
52345d9013 | ||
|
85020a76c2 | ||
|
5bf9b854b4 | ||
|
8f1f091aa4 | ||
|
a2d07af8c1 | ||
|
61945d03c6 | ||
|
2dc60f475b | ||
|
861618ef11 | ||
|
e9ef03eadb | ||
|
2293d37599 |
177
machine_learning/ridge_regression.py
Normal file
177
machine_learning/ridge_regression.py
Normal file
|
@ -0,0 +1,177 @@
|
||||||
|
import numpy as np
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
|
||||||
|
class RidgeRegression:
|
||||||
|
def __init__(
|
||||||
|
self, alpha: float = 0.001, lambda_: float = 0.1, iterations: int = 1000
|
||||||
|
) -> None:
|
||||||
|
"""
|
||||||
|
Ridge Regression Constructor
|
||||||
|
:param alpha: Learning rate for gradient descent
|
||||||
|
:param lambda_: Regularization parameter (L2 regularization)
|
||||||
|
:param iterations: Number of iterations for gradient descent
|
||||||
|
"""
|
||||||
|
self.alpha = alpha
|
||||||
|
self.lambda_ = lambda_
|
||||||
|
self.iterations = iterations
|
||||||
|
self.theta: np.ndarray | None = (
|
||||||
|
None # Initialize as None, later will be ndarray
|
||||||
|
)
|
||||||
|
|
||||||
|
def feature_scaling(
|
||||||
|
self, features: np.ndarray
|
||||||
|
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
|
||||||
|
"""
|
||||||
|
Normalize features to have mean 0 and standard deviation 1.
|
||||||
|
|
||||||
|
:param features: Input features, shape (m, n)
|
||||||
|
:return: Tuple containing:
|
||||||
|
- Scaled features
|
||||||
|
- Mean of each feature
|
||||||
|
- Standard deviation of each feature
|
||||||
|
|
||||||
|
Example:
|
||||||
|
>>> rr = RidgeRegression()
|
||||||
|
>>> features = np.array([[1, 2], [2, 3], [4, 6]])
|
||||||
|
>>> scaled_features, mean, std = rr.feature_scaling(features)
|
||||||
|
>>> np.allclose(scaled_features.mean(axis=0), 0)
|
||||||
|
True
|
||||||
|
>>> np.allclose(scaled_features.std(axis=0), 1)
|
||||||
|
True
|
||||||
|
"""
|
||||||
|
mean = np.mean(features, axis=0)
|
||||||
|
std = np.std(features, axis=0)
|
||||||
|
|
||||||
|
# Avoid division by zero for constant features (std = 0)
|
||||||
|
std[std == 0] = 1 # Set std=1 for constant features to avoid NaN
|
||||||
|
|
||||||
|
scaled_features = (features - mean) / std
|
||||||
|
return scaled_features, mean, std
|
||||||
|
|
||||||
|
def fit(self, features: np.ndarray, target: np.ndarray) -> None:
|
||||||
|
"""
|
||||||
|
Fit the Ridge Regression model to the training data.
|
||||||
|
|
||||||
|
:param features: Input features, shape (m, n)
|
||||||
|
:param target: Target values, shape (m,)
|
||||||
|
|
||||||
|
Example:
|
||||||
|
>>> rr = RidgeRegression(alpha=0.01, lambda_=0.1, iterations=10)
|
||||||
|
>>> features = np.array([[1, 2], [2, 3], [4, 6]])
|
||||||
|
>>> target = np.array([1, 2, 3])
|
||||||
|
>>> rr.fit(features, target)
|
||||||
|
>>> rr.theta is not None
|
||||||
|
True
|
||||||
|
"""
|
||||||
|
features_scaled, mean, std = self.feature_scaling(
|
||||||
|
features
|
||||||
|
) # Normalize features
|
||||||
|
m, n = features_scaled.shape
|
||||||
|
self.theta = np.zeros(n) # Initialize weights to zeros
|
||||||
|
|
||||||
|
for _ in range(self.iterations):
|
||||||
|
predictions = features_scaled.dot(self.theta)
|
||||||
|
error = predictions - target
|
||||||
|
|
||||||
|
# Compute gradient with L2 regularization
|
||||||
|
gradient = (features_scaled.T.dot(error) + self.lambda_ * self.theta) / m
|
||||||
|
self.theta -= self.alpha * gradient # Update weights
|
||||||
|
|
||||||
|
def predict(self, features: np.ndarray) -> np.ndarray:
|
||||||
|
"""
|
||||||
|
Predict values using the trained model.
|
||||||
|
|
||||||
|
:param features: Input features, shape (m, n)
|
||||||
|
:return: Predicted values, shape (m,)
|
||||||
|
|
||||||
|
Example:
|
||||||
|
>>> rr = RidgeRegression(alpha=0.01, lambda_=0.1, iterations=10)
|
||||||
|
>>> features = np.array([[1, 2], [2, 3], [4, 6]])
|
||||||
|
>>> target = np.array([1, 2, 3])
|
||||||
|
>>> rr.fit(features, target)
|
||||||
|
>>> predictions = rr.predict(features)
|
||||||
|
>>> predictions.shape == target.shape
|
||||||
|
True
|
||||||
|
"""
|
||||||
|
if self.theta is None:
|
||||||
|
raise ValueError("Model is not trained yet. Call the `fit` method first.")
|
||||||
|
|
||||||
|
features_scaled, _, _ = self.feature_scaling(
|
||||||
|
features
|
||||||
|
) # Scale features using training data
|
||||||
|
return features_scaled.dot(self.theta)
|
||||||
|
|
||||||
|
def compute_cost(self, features: np.ndarray, target: np.ndarray) -> float:
|
||||||
|
"""
|
||||||
|
Compute the cost function with regularization.
|
||||||
|
|
||||||
|
:param features: Input features, shape (m, n)
|
||||||
|
:param target: Target values, shape (m,)
|
||||||
|
:return: Computed cost
|
||||||
|
|
||||||
|
Example:
|
||||||
|
>>> rr = RidgeRegression(alpha=0.01, lambda_=0.1, iterations=10)
|
||||||
|
>>> features = np.array([[1, 2], [2, 3], [4, 6]])
|
||||||
|
>>> target = np.array([1, 2, 3])
|
||||||
|
>>> rr.fit(features, target)
|
||||||
|
>>> cost = rr.compute_cost(features, target)
|
||||||
|
>>> isinstance(cost, float)
|
||||||
|
True
|
||||||
|
"""
|
||||||
|
if self.theta is None:
|
||||||
|
raise ValueError("Model is not trained yet. Call the `fit` method first.")
|
||||||
|
|
||||||
|
features_scaled, _, _ = self.feature_scaling(
|
||||||
|
features
|
||||||
|
) # Scale features using training data
|
||||||
|
m = len(target)
|
||||||
|
predictions = features_scaled.dot(self.theta)
|
||||||
|
cost = (1 / (2 * m)) * np.sum((predictions - target) ** 2) + (
|
||||||
|
self.lambda_ / (2 * m)
|
||||||
|
) * np.sum(self.theta**2)
|
||||||
|
return cost
|
||||||
|
|
||||||
|
def mean_absolute_error(self, y_true: np.ndarray, y_pred: np.ndarray) -> float:
|
||||||
|
"""
|
||||||
|
Compute Mean Absolute Error (MAE) between true and predicted values.
|
||||||
|
|
||||||
|
:param y_true: Actual target values, shape (m,)
|
||||||
|
:param y_pred: Predicted target values, shape (m,)
|
||||||
|
:return: MAE
|
||||||
|
|
||||||
|
Example:
|
||||||
|
>>> rr = RidgeRegression(alpha=0.01, lambda_=0.1, iterations=10)
|
||||||
|
>>> y_true = np.array([1, 2, 3])
|
||||||
|
>>> y_pred = np.array([1.1, 2.1, 2.9])
|
||||||
|
>>> mae = rr.mean_absolute_error(y_true, y_pred)
|
||||||
|
>>> isinstance(mae, float)
|
||||||
|
True
|
||||||
|
"""
|
||||||
|
return np.mean(np.abs(y_true - y_pred))
|
||||||
|
|
||||||
|
|
||||||
|
# Example usage
|
||||||
|
if __name__ == "__main__":
|
||||||
|
# Load dataset
|
||||||
|
data = pd.read_csv(
|
||||||
|
"https://raw.githubusercontent.com/yashLadha/The_Math_of_Intelligence/master/Week1/ADRvsRating.csv"
|
||||||
|
)
|
||||||
|
data_x = data[["Rating"]].to_numpy() # Feature: Rating
|
||||||
|
data_y = data["ADR"].to_numpy() # Target: ADR
|
||||||
|
data_y = (data_y - np.mean(data_y)) / np.std(data_y)
|
||||||
|
|
||||||
|
# Add bias term (intercept) to the feature matrix
|
||||||
|
data_x = np.c_[np.ones(data_x.shape[0]), data_x] # Add intercept term
|
||||||
|
|
||||||
|
# Initialize and train the Ridge Regression model
|
||||||
|
model = RidgeRegression(alpha=0.01, lambda_=0.1, iterations=1000)
|
||||||
|
model.fit(data_x, data_y)
|
||||||
|
|
||||||
|
# Predictions
|
||||||
|
predictions = model.predict(data_x)
|
||||||
|
|
||||||
|
# Results
|
||||||
|
print("Optimized Weights:", model.theta)
|
||||||
|
print("Cost:", model.compute_cost(data_x, data_y))
|
||||||
|
print("Mean Absolute Error:", model.mean_absolute_error(data_y, predictions))
|
|
@ -1,4 +1,4 @@
|
||||||
#!/usr/bin/env python3
|
#!python
|
||||||
import os
|
import os
|
||||||
|
|
||||||
try:
|
try:
|
||||||
|
|
Loading…
Reference in New Issue
Block a user