- A collection of not so obvious Python stuff you should know! [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/not_so_obvious_python_stuff.ipynb?create=1)]
- Python's scope resolution for variable names and the LEGB rule [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/scope_resolution_legb_rule.ipynb?create=1)]
- Using Cython with and without IPython magic [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/running_cython.ipynb)]
- Parallel processing via the multiprocessing module [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/multiprocessing_intro.ipynb?create=1)]
- Entry point: Data - using sci-packages to prepare data for Machine Learning tasks and other data analyses [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/python_data_entry_point.ipynb?create=1)]
- Awesome things that you can do in IPython Notebooks (in progress) [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/awesome_things_ipynb.ipynb)]
- A collection of useful regular expressions [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/useful_regex.ipynb)]
- Quick guide for dealing with missing numbers in NumPy [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/numpy_nan_quickguide.ipynb)]
- A random collection of useful Python snippets [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/python_patterns/patterns.ipynb)]
- Things in pandas I wish I'd had known earlier [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/things_in_pandas.ipynb)]
*The algorithms category has been moved to a separate GitHub repository [rasbt/algorithms_in_ipython_notebooks](https://github.com/rasbt/algorithms_in_ipython_notebooks)*
- Linear regression via the least squares fit method [[IPython nb](http://nbviewer.ipython.org/github/rasbt/algorithms_in_ipython_notebooks/blob/master/ipython_nbs/statistics/linregr_least_squares_fit.ipynb?create=1)]
- Dixon's Q test to identify outliers for small sample sizes [[IPython nb](http://nbviewer.ipython.org/github/rasbt/algorithms_in_ipython_notebooks/blob/master/ipython_nbs/statistics/dixon_q_test.ipynb?create=1)]
*The matplotlib-gallery in IPython notebooks has been moved to a separate GitHub repository [matplotlib-gallery](https://github.com/rasbt/matplotlib-gallery)*
**Featured articles**:
- Preparing Plots for Publication [[IPython nb](http://nbviewer.ipython.org/github/rasbt/matplotlib-gallery/blob/master/ipynb/publication.ipynb)]
- Simple tricks to speed up the sum calculation in pandas [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/benchmarks/pandas_sum_tricks.ipynb)]
<br>
*More benchmarks can be found in the separate GitHub repository [One-Python-benchmark-per-day](https://github.com/rasbt/One-Python-benchmark-per-day)*
- Cython - Bridging the gap between Python and Fortran [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day10_fortran_lstsqr.ipynb)]
- Parallel processing via the multiprocessing module [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/multiprocessing_intro.ipynb)]
- Vectorizing a classic for-loop in NumPy [[IPython nb](http://nbviewer.ipython.org/github/rasbt/One-Python-benchmark-per-day/blob/master/ipython_nbs/day16_numpy_vectorization.ipynb)]
<br>
###// Python and "Data Science"
[[back to top](#a-collection-of-useful-scripts-tutorials-and-other-python-related-things)]
*The "data science"-related posts have been moved to a separate GitHub repository [pattern_classification](https://github.com/rasbt/pattern_classification)*
- Entry Point: Data - Using Python's sci-packages to prepare data for Machine Learning tasks and other data analyses [[IPython nb](http://nbviewer.ipython.org/github/rasbt/python_reference/blob/master/tutorials/python_data_entry_point.ipynb)]
- About Feature Scaling: Standardization and Min-Max-Scaling (Normalization) [[IPython nb](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/preprocessing/about_standardization_normalization.ipynb)]
- Kernel density estimation via the Parzen-window technique [[IPython nb](http://nbviewer.ipython.org/github/rasbt/pattern_classification/blob/master/parameter_estimation_techniques/parzen_window_technique.ipynb)]
- [watermark](https://github.com/rasbt/watermark) - An IPython magic extension for printing date and time stamps, version numbers, and hardware information.
- [Python community on Google+](https://plus.google.com/communities/103393744324769547228) - A nice and friendly community to share and discuss everything about Python.
- [Learn Python The Hard Way](http://learnpythonthehardway.org/book/) - The popular and probably most recommended resource for learning Python.
- [Dive Into Python](http://www.diveintopython.net) / [Dive Into Python 3](http://getpython3.com/diveintopython3/) - A free Python book for experienced programmers.
- [Think Python - How to Think Like a Computer Scientist](http://www.greenteapress.com/thinkpython/) - An introduction for beginners starting with basic concepts of programming.
- [The IPython Notebook](http://ipython.org/notebook.html) - An interactive computational environment for combining code execution, documentation (with Markdown and LateX support), inline plots, and rich media all in one document.
- [NumPy](http://www.numpy.org) - A library for multi-dimensional arrays and matrices, along with a large library of high-level mathematical functions to operate on these arrays.
- [SciPy](http://www.scipy.org) - A library that provides various useful functions for numerical computing, such as modules for optimization, linear algebra, integration, interpolation, ...