2023-10-20 21:29:42 +00:00
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
def binary_cross_entropy(
|
|
|
|
y_true: np.ndarray, y_pred: np.ndarray, epsilon: float = 1e-15
|
|
|
|
) -> float:
|
|
|
|
"""
|
|
|
|
Calculate the mean binary cross-entropy (BCE) loss between true labels and predicted
|
|
|
|
probabilities.
|
|
|
|
|
|
|
|
BCE loss quantifies dissimilarity between true labels (0 or 1) and predicted
|
|
|
|
probabilities. It's widely used in binary classification tasks.
|
|
|
|
|
|
|
|
BCE = -Σ(y_true * ln(y_pred) + (1 - y_true) * ln(1 - y_pred))
|
|
|
|
|
|
|
|
Reference: https://en.wikipedia.org/wiki/Cross_entropy
|
|
|
|
|
|
|
|
Parameters:
|
|
|
|
- y_true: True binary labels (0 or 1)
|
|
|
|
- y_pred: Predicted probabilities for class 1
|
|
|
|
- epsilon: Small constant to avoid numerical instability
|
|
|
|
|
|
|
|
>>> true_labels = np.array([0, 1, 1, 0, 1])
|
|
|
|
>>> predicted_probs = np.array([0.2, 0.7, 0.9, 0.3, 0.8])
|
|
|
|
>>> binary_cross_entropy(true_labels, predicted_probs)
|
|
|
|
0.2529995012327421
|
|
|
|
>>> true_labels = np.array([0, 1, 1, 0, 1])
|
|
|
|
>>> predicted_probs = np.array([0.3, 0.8, 0.9, 0.2])
|
|
|
|
>>> binary_cross_entropy(true_labels, predicted_probs)
|
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
ValueError: Input arrays must have the same length.
|
|
|
|
"""
|
|
|
|
if len(y_true) != len(y_pred):
|
|
|
|
raise ValueError("Input arrays must have the same length.")
|
|
|
|
|
|
|
|
y_pred = np.clip(y_pred, epsilon, 1 - epsilon) # Clip predictions to avoid log(0)
|
|
|
|
bce_loss = -(y_true * np.log(y_pred) + (1 - y_true) * np.log(1 - y_pred))
|
|
|
|
return np.mean(bce_loss)
|
|
|
|
|
|
|
|
|
2023-10-23 05:24:51 +00:00
|
|
|
def binary_focal_cross_entropy(
|
|
|
|
y_true: np.ndarray,
|
|
|
|
y_pred: np.ndarray,
|
|
|
|
gamma: float = 2.0,
|
|
|
|
alpha: float = 0.25,
|
|
|
|
epsilon: float = 1e-15,
|
|
|
|
) -> float:
|
|
|
|
"""
|
|
|
|
Calculate the mean binary focal cross-entropy (BFCE) loss between true labels
|
|
|
|
and predicted probabilities.
|
|
|
|
|
|
|
|
BFCE loss quantifies dissimilarity between true labels (0 or 1) and predicted
|
|
|
|
probabilities. It's a variation of binary cross-entropy that addresses class
|
|
|
|
imbalance by focusing on hard examples.
|
|
|
|
|
|
|
|
BCFE = -Σ(alpha * (1 - y_pred)**gamma * y_true * log(y_pred)
|
|
|
|
+ (1 - alpha) * y_pred**gamma * (1 - y_true) * log(1 - y_pred))
|
|
|
|
|
|
|
|
Reference: [Lin et al., 2018](https://arxiv.org/pdf/1708.02002.pdf)
|
|
|
|
|
|
|
|
Parameters:
|
|
|
|
- y_true: True binary labels (0 or 1).
|
|
|
|
- y_pred: Predicted probabilities for class 1.
|
|
|
|
- gamma: Focusing parameter for modulating the loss (default: 2.0).
|
|
|
|
- alpha: Weighting factor for class 1 (default: 0.25).
|
|
|
|
- epsilon: Small constant to avoid numerical instability.
|
|
|
|
|
|
|
|
>>> true_labels = np.array([0, 1, 1, 0, 1])
|
|
|
|
>>> predicted_probs = np.array([0.2, 0.7, 0.9, 0.3, 0.8])
|
|
|
|
>>> binary_focal_cross_entropy(true_labels, predicted_probs)
|
|
|
|
0.008257977659239775
|
|
|
|
>>> true_labels = np.array([0, 1, 1, 0, 1])
|
|
|
|
>>> predicted_probs = np.array([0.3, 0.8, 0.9, 0.2])
|
|
|
|
>>> binary_focal_cross_entropy(true_labels, predicted_probs)
|
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
ValueError: Input arrays must have the same length.
|
|
|
|
"""
|
|
|
|
if len(y_true) != len(y_pred):
|
|
|
|
raise ValueError("Input arrays must have the same length.")
|
|
|
|
# Clip predicted probabilities to avoid log(0)
|
|
|
|
y_pred = np.clip(y_pred, epsilon, 1 - epsilon)
|
|
|
|
|
|
|
|
bcfe_loss = -(
|
|
|
|
alpha * (1 - y_pred) ** gamma * y_true * np.log(y_pred)
|
|
|
|
+ (1 - alpha) * y_pred**gamma * (1 - y_true) * np.log(1 - y_pred)
|
|
|
|
)
|
|
|
|
|
|
|
|
return np.mean(bcfe_loss)
|
|
|
|
|
|
|
|
|
2023-10-20 21:29:42 +00:00
|
|
|
def categorical_cross_entropy(
|
|
|
|
y_true: np.ndarray, y_pred: np.ndarray, epsilon: float = 1e-15
|
|
|
|
) -> float:
|
|
|
|
"""
|
|
|
|
Calculate categorical cross-entropy (CCE) loss between true class labels and
|
|
|
|
predicted class probabilities.
|
|
|
|
|
|
|
|
CCE = -Σ(y_true * ln(y_pred))
|
|
|
|
|
|
|
|
Reference: https://en.wikipedia.org/wiki/Cross_entropy
|
|
|
|
|
|
|
|
Parameters:
|
|
|
|
- y_true: True class labels (one-hot encoded)
|
|
|
|
- y_pred: Predicted class probabilities
|
|
|
|
- epsilon: Small constant to avoid numerical instability
|
|
|
|
|
|
|
|
>>> true_labels = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
|
|
|
|
>>> pred_probs = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1], [0.0, 0.1, 0.9]])
|
|
|
|
>>> categorical_cross_entropy(true_labels, pred_probs)
|
|
|
|
0.567395975254385
|
|
|
|
>>> true_labels = np.array([[1, 0], [0, 1]])
|
|
|
|
>>> pred_probs = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1]])
|
|
|
|
>>> categorical_cross_entropy(true_labels, pred_probs)
|
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
ValueError: Input arrays must have the same shape.
|
|
|
|
>>> true_labels = np.array([[2, 0, 1], [1, 0, 0]])
|
|
|
|
>>> pred_probs = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1]])
|
|
|
|
>>> categorical_cross_entropy(true_labels, pred_probs)
|
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
ValueError: y_true must be one-hot encoded.
|
|
|
|
>>> true_labels = np.array([[1, 0, 1], [1, 0, 0]])
|
|
|
|
>>> pred_probs = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1]])
|
|
|
|
>>> categorical_cross_entropy(true_labels, pred_probs)
|
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
ValueError: y_true must be one-hot encoded.
|
|
|
|
>>> true_labels = np.array([[1, 0, 0], [0, 1, 0]])
|
|
|
|
>>> pred_probs = np.array([[0.9, 0.1, 0.1], [0.2, 0.7, 0.1]])
|
|
|
|
>>> categorical_cross_entropy(true_labels, pred_probs)
|
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
ValueError: Predicted probabilities must sum to approximately 1.
|
|
|
|
"""
|
|
|
|
if y_true.shape != y_pred.shape:
|
|
|
|
raise ValueError("Input arrays must have the same shape.")
|
|
|
|
|
|
|
|
if np.any((y_true != 0) & (y_true != 1)) or np.any(y_true.sum(axis=1) != 1):
|
|
|
|
raise ValueError("y_true must be one-hot encoded.")
|
|
|
|
|
|
|
|
if not np.all(np.isclose(np.sum(y_pred, axis=1), 1, rtol=epsilon, atol=epsilon)):
|
|
|
|
raise ValueError("Predicted probabilities must sum to approximately 1.")
|
|
|
|
|
|
|
|
y_pred = np.clip(y_pred, epsilon, 1) # Clip predictions to avoid log(0)
|
|
|
|
return -np.sum(y_true * np.log(y_pred))
|
|
|
|
|
|
|
|
|
2024-01-18 12:41:29 +00:00
|
|
|
def categorical_focal_cross_entropy(
|
|
|
|
y_true: np.ndarray,
|
|
|
|
y_pred: np.ndarray,
|
|
|
|
alpha: np.ndarray = None,
|
|
|
|
gamma: float = 2.0,
|
|
|
|
epsilon: float = 1e-15,
|
|
|
|
) -> float:
|
|
|
|
"""
|
|
|
|
Calculate the mean categorical focal cross-entropy (CFCE) loss between true
|
|
|
|
labels and predicted probabilities for multi-class classification.
|
|
|
|
|
|
|
|
CFCE loss is a generalization of binary focal cross-entropy for multi-class
|
|
|
|
classification. It addresses class imbalance by focusing on hard examples.
|
|
|
|
|
|
|
|
CFCE = -Σ alpha * (1 - y_pred)**gamma * y_true * log(y_pred)
|
|
|
|
|
|
|
|
Reference: [Lin et al., 2018](https://arxiv.org/pdf/1708.02002.pdf)
|
|
|
|
|
|
|
|
Parameters:
|
|
|
|
- y_true: True labels in one-hot encoded form.
|
|
|
|
- y_pred: Predicted probabilities for each class.
|
|
|
|
- alpha: Array of weighting factors for each class.
|
|
|
|
- gamma: Focusing parameter for modulating the loss (default: 2.0).
|
|
|
|
- epsilon: Small constant to avoid numerical instability.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
- The mean categorical focal cross-entropy loss.
|
|
|
|
|
|
|
|
>>> true_labels = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
|
|
|
|
>>> pred_probs = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1], [0.0, 0.1, 0.9]])
|
|
|
|
>>> alpha = np.array([0.6, 0.2, 0.7])
|
|
|
|
>>> categorical_focal_cross_entropy(true_labels, pred_probs, alpha)
|
|
|
|
0.0025966118981496423
|
|
|
|
|
|
|
|
>>> true_labels = np.array([[0, 1, 0], [0, 0, 1]])
|
|
|
|
>>> pred_probs = np.array([[0.05, 0.95, 0], [0.1, 0.8, 0.1]])
|
|
|
|
>>> alpha = np.array([0.25, 0.25, 0.25])
|
|
|
|
>>> categorical_focal_cross_entropy(true_labels, pred_probs, alpha)
|
|
|
|
0.23315276982014324
|
|
|
|
|
|
|
|
>>> true_labels = np.array([[1, 0], [0, 1]])
|
|
|
|
>>> pred_probs = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1]])
|
|
|
|
>>> categorical_cross_entropy(true_labels, pred_probs)
|
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
ValueError: Input arrays must have the same shape.
|
|
|
|
|
|
|
|
>>> true_labels = np.array([[2, 0, 1], [1, 0, 0]])
|
|
|
|
>>> pred_probs = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1]])
|
|
|
|
>>> categorical_focal_cross_entropy(true_labels, pred_probs)
|
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
ValueError: y_true must be one-hot encoded.
|
|
|
|
|
|
|
|
>>> true_labels = np.array([[1, 0, 1], [1, 0, 0]])
|
|
|
|
>>> pred_probs = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1]])
|
|
|
|
>>> categorical_focal_cross_entropy(true_labels, pred_probs)
|
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
ValueError: y_true must be one-hot encoded.
|
|
|
|
|
|
|
|
>>> true_labels = np.array([[1, 0, 0], [0, 1, 0]])
|
|
|
|
>>> pred_probs = np.array([[0.9, 0.1, 0.1], [0.2, 0.7, 0.1]])
|
|
|
|
>>> categorical_focal_cross_entropy(true_labels, pred_probs)
|
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
ValueError: Predicted probabilities must sum to approximately 1.
|
|
|
|
|
|
|
|
>>> true_labels = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]])
|
|
|
|
>>> pred_probs = np.array([[0.9, 0.1, 0.0], [0.2, 0.7, 0.1], [0.0, 0.1, 0.9]])
|
|
|
|
>>> alpha = np.array([0.6, 0.2])
|
|
|
|
>>> categorical_focal_cross_entropy(true_labels, pred_probs, alpha)
|
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
ValueError: Length of alpha must match the number of classes.
|
|
|
|
"""
|
|
|
|
if y_true.shape != y_pred.shape:
|
|
|
|
raise ValueError("Shape of y_true and y_pred must be the same.")
|
|
|
|
|
|
|
|
if alpha is None:
|
|
|
|
alpha = np.ones(y_true.shape[1])
|
|
|
|
|
|
|
|
if np.any((y_true != 0) & (y_true != 1)) or np.any(y_true.sum(axis=1) != 1):
|
|
|
|
raise ValueError("y_true must be one-hot encoded.")
|
|
|
|
|
|
|
|
if len(alpha) != y_true.shape[1]:
|
|
|
|
raise ValueError("Length of alpha must match the number of classes.")
|
|
|
|
|
|
|
|
if not np.all(np.isclose(np.sum(y_pred, axis=1), 1, rtol=epsilon, atol=epsilon)):
|
|
|
|
raise ValueError("Predicted probabilities must sum to approximately 1.")
|
|
|
|
|
|
|
|
# Clip predicted probabilities to avoid log(0)
|
|
|
|
y_pred = np.clip(y_pred, epsilon, 1 - epsilon)
|
|
|
|
|
|
|
|
# Calculate loss for each class and sum across classes
|
|
|
|
cfce_loss = -np.sum(
|
|
|
|
alpha * np.power(1 - y_pred, gamma) * y_true * np.log(y_pred), axis=1
|
|
|
|
)
|
|
|
|
|
|
|
|
return np.mean(cfce_loss)
|
|
|
|
|
|
|
|
|
2023-10-20 21:29:42 +00:00
|
|
|
def hinge_loss(y_true: np.ndarray, y_pred: np.ndarray) -> float:
|
|
|
|
"""
|
|
|
|
Calculate the mean hinge loss for between true labels and predicted probabilities
|
|
|
|
for training support vector machines (SVMs).
|
|
|
|
|
|
|
|
Hinge loss = max(0, 1 - true * pred)
|
|
|
|
|
|
|
|
Reference: https://en.wikipedia.org/wiki/Hinge_loss
|
|
|
|
|
|
|
|
Args:
|
|
|
|
- y_true: actual values (ground truth) encoded as -1 or 1
|
|
|
|
- y_pred: predicted values
|
|
|
|
|
|
|
|
>>> true_labels = np.array([-1, 1, 1, -1, 1])
|
|
|
|
>>> pred = np.array([-4, -0.3, 0.7, 5, 10])
|
|
|
|
>>> hinge_loss(true_labels, pred)
|
|
|
|
1.52
|
|
|
|
>>> true_labels = np.array([-1, 1, 1, -1, 1, 1])
|
|
|
|
>>> pred = np.array([-4, -0.3, 0.7, 5, 10])
|
|
|
|
>>> hinge_loss(true_labels, pred)
|
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
ValueError: Length of predicted and actual array must be same.
|
|
|
|
>>> true_labels = np.array([-1, 1, 10, -1, 1])
|
|
|
|
>>> pred = np.array([-4, -0.3, 0.7, 5, 10])
|
|
|
|
>>> hinge_loss(true_labels, pred)
|
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
ValueError: y_true can have values -1 or 1 only.
|
|
|
|
"""
|
|
|
|
if len(y_true) != len(y_pred):
|
|
|
|
raise ValueError("Length of predicted and actual array must be same.")
|
|
|
|
|
|
|
|
if np.any((y_true != -1) & (y_true != 1)):
|
|
|
|
raise ValueError("y_true can have values -1 or 1 only.")
|
|
|
|
|
|
|
|
hinge_losses = np.maximum(0, 1.0 - (y_true * y_pred))
|
|
|
|
return np.mean(hinge_losses)
|
|
|
|
|
|
|
|
|
|
|
|
def huber_loss(y_true: np.ndarray, y_pred: np.ndarray, delta: float) -> float:
|
|
|
|
"""
|
|
|
|
Calculate the mean Huber loss between the given ground truth and predicted values.
|
|
|
|
|
|
|
|
The Huber loss describes the penalty incurred by an estimation procedure, and it
|
|
|
|
serves as a measure of accuracy for regression models.
|
|
|
|
|
|
|
|
Huber loss =
|
|
|
|
0.5 * (y_true - y_pred)^2 if |y_true - y_pred| <= delta
|
|
|
|
delta * |y_true - y_pred| - 0.5 * delta^2 otherwise
|
|
|
|
|
|
|
|
Reference: https://en.wikipedia.org/wiki/Huber_loss
|
|
|
|
|
|
|
|
Parameters:
|
|
|
|
- y_true: The true values (ground truth)
|
|
|
|
- y_pred: The predicted values
|
|
|
|
|
|
|
|
>>> true_values = np.array([0.9, 10.0, 2.0, 1.0, 5.2])
|
|
|
|
>>> predicted_values = np.array([0.8, 2.1, 2.9, 4.2, 5.2])
|
|
|
|
>>> np.isclose(huber_loss(true_values, predicted_values, 1.0), 2.102)
|
|
|
|
True
|
|
|
|
>>> true_labels = np.array([11.0, 21.0, 3.32, 4.0, 5.0])
|
|
|
|
>>> predicted_probs = np.array([8.3, 20.8, 2.9, 11.2, 5.0])
|
|
|
|
>>> np.isclose(huber_loss(true_labels, predicted_probs, 1.0), 1.80164)
|
|
|
|
True
|
|
|
|
>>> true_labels = np.array([11.0, 21.0, 3.32, 4.0])
|
|
|
|
>>> predicted_probs = np.array([8.3, 20.8, 2.9, 11.2, 5.0])
|
|
|
|
>>> huber_loss(true_labels, predicted_probs, 1.0)
|
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
ValueError: Input arrays must have the same length.
|
|
|
|
"""
|
|
|
|
if len(y_true) != len(y_pred):
|
|
|
|
raise ValueError("Input arrays must have the same length.")
|
|
|
|
|
|
|
|
huber_mse = 0.5 * (y_true - y_pred) ** 2
|
|
|
|
huber_mae = delta * (np.abs(y_true - y_pred) - 0.5 * delta)
|
|
|
|
return np.where(np.abs(y_true - y_pred) <= delta, huber_mse, huber_mae).mean()
|
|
|
|
|
|
|
|
|
|
|
|
def mean_squared_error(y_true: np.ndarray, y_pred: np.ndarray) -> float:
|
|
|
|
"""
|
|
|
|
Calculate the mean squared error (MSE) between ground truth and predicted values.
|
|
|
|
|
|
|
|
MSE measures the squared difference between true values and predicted values, and it
|
|
|
|
serves as a measure of accuracy for regression models.
|
|
|
|
|
|
|
|
MSE = (1/n) * Σ(y_true - y_pred)^2
|
|
|
|
|
|
|
|
Reference: https://en.wikipedia.org/wiki/Mean_squared_error
|
|
|
|
|
|
|
|
Parameters:
|
|
|
|
- y_true: The true values (ground truth)
|
|
|
|
- y_pred: The predicted values
|
|
|
|
|
|
|
|
>>> true_values = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
|
|
|
|
>>> predicted_values = np.array([0.8, 2.1, 2.9, 4.2, 5.2])
|
|
|
|
>>> np.isclose(mean_squared_error(true_values, predicted_values), 0.028)
|
|
|
|
True
|
|
|
|
>>> true_labels = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
|
|
|
|
>>> predicted_probs = np.array([0.3, 0.8, 0.9, 0.2])
|
|
|
|
>>> mean_squared_error(true_labels, predicted_probs)
|
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
ValueError: Input arrays must have the same length.
|
|
|
|
"""
|
|
|
|
if len(y_true) != len(y_pred):
|
|
|
|
raise ValueError("Input arrays must have the same length.")
|
|
|
|
|
|
|
|
squared_errors = (y_true - y_pred) ** 2
|
|
|
|
return np.mean(squared_errors)
|
|
|
|
|
|
|
|
|
2023-10-26 05:31:47 +00:00
|
|
|
def mean_absolute_error(y_true: np.ndarray, y_pred: np.ndarray) -> float:
|
|
|
|
"""
|
|
|
|
Calculates the Mean Absolute Error (MAE) between ground truth (observed)
|
|
|
|
and predicted values.
|
|
|
|
|
|
|
|
MAE measures the absolute difference between true values and predicted values.
|
|
|
|
|
|
|
|
Equation:
|
|
|
|
MAE = (1/n) * Σ(abs(y_true - y_pred))
|
|
|
|
|
|
|
|
Reference: https://en.wikipedia.org/wiki/Mean_absolute_error
|
|
|
|
|
|
|
|
Parameters:
|
|
|
|
- y_true: The true values (ground truth)
|
|
|
|
- y_pred: The predicted values
|
|
|
|
|
|
|
|
>>> true_values = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
|
|
|
|
>>> predicted_values = np.array([0.8, 2.1, 2.9, 4.2, 5.2])
|
|
|
|
>>> np.isclose(mean_absolute_error(true_values, predicted_values), 0.16)
|
|
|
|
True
|
|
|
|
>>> true_values = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
|
|
|
|
>>> predicted_values = np.array([0.8, 2.1, 2.9, 4.2, 5.2])
|
|
|
|
>>> np.isclose(mean_absolute_error(true_values, predicted_values), 2.16)
|
|
|
|
False
|
|
|
|
>>> true_labels = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
|
|
|
|
>>> predicted_probs = np.array([0.3, 0.8, 0.9, 5.2])
|
|
|
|
>>> mean_absolute_error(true_labels, predicted_probs)
|
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
ValueError: Input arrays must have the same length.
|
|
|
|
"""
|
|
|
|
if len(y_true) != len(y_pred):
|
|
|
|
raise ValueError("Input arrays must have the same length.")
|
|
|
|
|
|
|
|
return np.mean(abs(y_true - y_pred))
|
|
|
|
|
|
|
|
|
2023-10-20 21:29:42 +00:00
|
|
|
def mean_squared_logarithmic_error(y_true: np.ndarray, y_pred: np.ndarray) -> float:
|
|
|
|
"""
|
|
|
|
Calculate the mean squared logarithmic error (MSLE) between ground truth and
|
|
|
|
predicted values.
|
|
|
|
|
|
|
|
MSLE measures the squared logarithmic difference between true values and predicted
|
|
|
|
values for regression models. It's particularly useful for dealing with skewed or
|
|
|
|
large-value data, and it's often used when the relative differences between
|
|
|
|
predicted and true values are more important than absolute differences.
|
|
|
|
|
|
|
|
MSLE = (1/n) * Σ(log(1 + y_true) - log(1 + y_pred))^2
|
|
|
|
|
|
|
|
Reference: https://insideaiml.com/blog/MeanSquared-Logarithmic-Error-Loss-1035
|
|
|
|
|
|
|
|
Parameters:
|
|
|
|
- y_true: The true values (ground truth)
|
|
|
|
- y_pred: The predicted values
|
|
|
|
|
|
|
|
>>> true_values = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
|
|
|
|
>>> predicted_values = np.array([0.8, 2.1, 2.9, 4.2, 5.2])
|
|
|
|
>>> mean_squared_logarithmic_error(true_values, predicted_values)
|
|
|
|
0.0030860877925181344
|
|
|
|
>>> true_labels = np.array([1.0, 2.0, 3.0, 4.0, 5.0])
|
|
|
|
>>> predicted_probs = np.array([0.3, 0.8, 0.9, 0.2])
|
|
|
|
>>> mean_squared_logarithmic_error(true_labels, predicted_probs)
|
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
ValueError: Input arrays must have the same length.
|
|
|
|
"""
|
|
|
|
if len(y_true) != len(y_pred):
|
|
|
|
raise ValueError("Input arrays must have the same length.")
|
|
|
|
|
|
|
|
squared_logarithmic_errors = (np.log1p(y_true) - np.log1p(y_pred)) ** 2
|
|
|
|
return np.mean(squared_logarithmic_errors)
|
|
|
|
|
|
|
|
|
2023-10-25 23:05:35 +00:00
|
|
|
def mean_absolute_percentage_error(
|
|
|
|
y_true: np.ndarray, y_pred: np.ndarray, epsilon: float = 1e-15
|
|
|
|
) -> float:
|
|
|
|
"""
|
|
|
|
Calculate the Mean Absolute Percentage Error between y_true and y_pred.
|
|
|
|
|
|
|
|
Mean Absolute Percentage Error calculates the average of the absolute
|
|
|
|
percentage differences between the predicted and true values.
|
|
|
|
|
|
|
|
Formula = (Σ|y_true[i]-Y_pred[i]/y_true[i]|)/n
|
|
|
|
|
|
|
|
Source: https://stephenallwright.com/good-mape-score/
|
|
|
|
|
|
|
|
Parameters:
|
|
|
|
y_true (np.ndarray): Numpy array containing true/target values.
|
|
|
|
y_pred (np.ndarray): Numpy array containing predicted values.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
float: The Mean Absolute Percentage error between y_true and y_pred.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
>>> y_true = np.array([10, 20, 30, 40])
|
|
|
|
>>> y_pred = np.array([12, 18, 33, 45])
|
|
|
|
>>> mean_absolute_percentage_error(y_true, y_pred)
|
|
|
|
0.13125
|
|
|
|
|
|
|
|
>>> y_true = np.array([1, 2, 3, 4])
|
|
|
|
>>> y_pred = np.array([2, 3, 4, 5])
|
|
|
|
>>> mean_absolute_percentage_error(y_true, y_pred)
|
|
|
|
0.5208333333333333
|
|
|
|
|
|
|
|
>>> y_true = np.array([34, 37, 44, 47, 48, 48, 46, 43, 32, 27, 26, 24])
|
|
|
|
>>> y_pred = np.array([37, 40, 46, 44, 46, 50, 45, 44, 34, 30, 22, 23])
|
|
|
|
>>> mean_absolute_percentage_error(y_true, y_pred)
|
|
|
|
0.064671076436071
|
|
|
|
"""
|
|
|
|
if len(y_true) != len(y_pred):
|
|
|
|
raise ValueError("The length of the two arrays should be the same.")
|
|
|
|
|
|
|
|
y_true = np.where(y_true == 0, epsilon, y_true)
|
|
|
|
absolute_percentage_diff = np.abs((y_true - y_pred) / y_true)
|
|
|
|
|
|
|
|
return np.mean(absolute_percentage_diff)
|
|
|
|
|
|
|
|
|
2023-10-27 14:44:33 +00:00
|
|
|
def perplexity_loss(
|
|
|
|
y_true: np.ndarray, y_pred: np.ndarray, epsilon: float = 1e-7
|
|
|
|
) -> float:
|
|
|
|
"""
|
|
|
|
Calculate the perplexity for the y_true and y_pred.
|
|
|
|
|
|
|
|
Compute the Perplexity which useful in predicting language model
|
|
|
|
accuracy in Natural Language Processing (NLP.)
|
|
|
|
Perplexity is measure of how certain the model in its predictions.
|
|
|
|
|
|
|
|
Perplexity Loss = exp(-1/N (Σ ln(p(x)))
|
|
|
|
|
|
|
|
Reference:
|
|
|
|
https://en.wikipedia.org/wiki/Perplexity
|
|
|
|
|
|
|
|
Args:
|
|
|
|
y_true: Actual label encoded sentences of shape (batch_size, sentence_length)
|
|
|
|
y_pred: Predicted sentences of shape (batch_size, sentence_length, vocab_size)
|
|
|
|
epsilon: Small floating point number to avoid getting inf for log(0)
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Perplexity loss between y_true and y_pred.
|
|
|
|
|
|
|
|
>>> y_true = np.array([[1, 4], [2, 3]])
|
|
|
|
>>> y_pred = np.array(
|
|
|
|
... [[[0.28, 0.19, 0.21 , 0.15, 0.15],
|
|
|
|
... [0.24, 0.19, 0.09, 0.18, 0.27]],
|
|
|
|
... [[0.03, 0.26, 0.21, 0.18, 0.30],
|
|
|
|
... [0.28, 0.10, 0.33, 0.15, 0.12]]]
|
|
|
|
... )
|
|
|
|
>>> perplexity_loss(y_true, y_pred)
|
|
|
|
5.0247347775367945
|
|
|
|
>>> y_true = np.array([[1, 4], [2, 3]])
|
|
|
|
>>> y_pred = np.array(
|
|
|
|
... [[[0.28, 0.19, 0.21 , 0.15, 0.15],
|
|
|
|
... [0.24, 0.19, 0.09, 0.18, 0.27],
|
|
|
|
... [0.30, 0.10, 0.20, 0.15, 0.25]],
|
|
|
|
... [[0.03, 0.26, 0.21, 0.18, 0.30],
|
|
|
|
... [0.28, 0.10, 0.33, 0.15, 0.12],
|
|
|
|
... [0.30, 0.10, 0.20, 0.15, 0.25]],]
|
|
|
|
... )
|
|
|
|
>>> perplexity_loss(y_true, y_pred)
|
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
ValueError: Sentence length of y_true and y_pred must be equal.
|
|
|
|
>>> y_true = np.array([[1, 4], [2, 11]])
|
|
|
|
>>> y_pred = np.array(
|
|
|
|
... [[[0.28, 0.19, 0.21 , 0.15, 0.15],
|
|
|
|
... [0.24, 0.19, 0.09, 0.18, 0.27]],
|
|
|
|
... [[0.03, 0.26, 0.21, 0.18, 0.30],
|
|
|
|
... [0.28, 0.10, 0.33, 0.15, 0.12]]]
|
|
|
|
... )
|
|
|
|
>>> perplexity_loss(y_true, y_pred)
|
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
ValueError: Label value must not be greater than vocabulary size.
|
|
|
|
>>> y_true = np.array([[1, 4]])
|
|
|
|
>>> y_pred = np.array(
|
|
|
|
... [[[0.28, 0.19, 0.21 , 0.15, 0.15],
|
|
|
|
... [0.24, 0.19, 0.09, 0.18, 0.27]],
|
|
|
|
... [[0.03, 0.26, 0.21, 0.18, 0.30],
|
|
|
|
... [0.28, 0.10, 0.33, 0.15, 0.12]]]
|
|
|
|
... )
|
|
|
|
>>> perplexity_loss(y_true, y_pred)
|
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
ValueError: Batch size of y_true and y_pred must be equal.
|
|
|
|
"""
|
|
|
|
|
|
|
|
vocab_size = y_pred.shape[2]
|
|
|
|
|
|
|
|
if y_true.shape[0] != y_pred.shape[0]:
|
|
|
|
raise ValueError("Batch size of y_true and y_pred must be equal.")
|
|
|
|
if y_true.shape[1] != y_pred.shape[1]:
|
|
|
|
raise ValueError("Sentence length of y_true and y_pred must be equal.")
|
|
|
|
if np.max(y_true) > vocab_size:
|
|
|
|
raise ValueError("Label value must not be greater than vocabulary size.")
|
|
|
|
|
|
|
|
# Matrix to select prediction value only for true class
|
|
|
|
filter_matrix = np.array(
|
|
|
|
[[list(np.eye(vocab_size)[word]) for word in sentence] for sentence in y_true]
|
|
|
|
)
|
|
|
|
|
|
|
|
# Getting the matrix containing prediction for only true class
|
|
|
|
true_class_pred = np.sum(y_pred * filter_matrix, axis=2).clip(epsilon, 1)
|
|
|
|
|
|
|
|
# Calculating perplexity for each sentence
|
|
|
|
perp_losses = np.exp(np.negative(np.mean(np.log(true_class_pred), axis=1)))
|
|
|
|
|
|
|
|
return np.mean(perp_losses)
|
|
|
|
|
|
|
|
|
2024-01-30 08:18:56 +00:00
|
|
|
def smooth_l1_loss(y_true: np.ndarray, y_pred: np.ndarray, beta: float = 1.0) -> float:
|
|
|
|
"""
|
|
|
|
Calculate the Smooth L1 Loss between y_true and y_pred.
|
|
|
|
|
|
|
|
The Smooth L1 Loss is less sensitive to outliers than the L2 Loss and is often used
|
|
|
|
in regression problems, such as object detection.
|
|
|
|
|
|
|
|
Smooth L1 Loss =
|
|
|
|
0.5 * (x - y)^2 / beta, if |x - y| < beta
|
|
|
|
|x - y| - 0.5 * beta, otherwise
|
|
|
|
|
|
|
|
Reference:
|
|
|
|
https://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html
|
|
|
|
|
|
|
|
Args:
|
|
|
|
y_true: Array of true values.
|
|
|
|
y_pred: Array of predicted values.
|
|
|
|
beta: Specifies the threshold at which to change between L1 and L2 loss.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
The calculated Smooth L1 Loss between y_true and y_pred.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
ValueError: If the length of the two arrays is not the same.
|
|
|
|
|
|
|
|
>>> y_true = np.array([3, 5, 2, 7])
|
|
|
|
>>> y_pred = np.array([2.9, 4.8, 2.1, 7.2])
|
|
|
|
>>> smooth_l1_loss(y_true, y_pred, 1.0)
|
|
|
|
0.012500000000000022
|
|
|
|
|
|
|
|
>>> y_true = np.array([2, 4, 6])
|
|
|
|
>>> y_pred = np.array([1, 5, 7])
|
|
|
|
>>> smooth_l1_loss(y_true, y_pred, 1.0)
|
|
|
|
0.5
|
|
|
|
|
|
|
|
>>> y_true = np.array([1, 3, 5, 7])
|
|
|
|
>>> y_pred = np.array([1, 3, 5, 7])
|
|
|
|
>>> smooth_l1_loss(y_true, y_pred, 1.0)
|
|
|
|
0.0
|
|
|
|
|
|
|
|
>>> y_true = np.array([1, 3, 5])
|
|
|
|
>>> y_pred = np.array([1, 3, 5, 7])
|
|
|
|
>>> smooth_l1_loss(y_true, y_pred, 1.0)
|
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
ValueError: The length of the two arrays should be the same.
|
|
|
|
"""
|
|
|
|
|
|
|
|
if len(y_true) != len(y_pred):
|
|
|
|
raise ValueError("The length of the two arrays should be the same.")
|
|
|
|
|
|
|
|
diff = np.abs(y_true - y_pred)
|
|
|
|
loss = np.where(diff < beta, 0.5 * diff**2 / beta, diff - 0.5 * beta)
|
|
|
|
return np.mean(loss)
|
|
|
|
|
|
|
|
|
2024-06-03 03:15:01 +00:00
|
|
|
def kullback_leibler_divergence(y_true: np.ndarray, y_pred: np.ndarray) -> float:
|
|
|
|
"""
|
|
|
|
Calculate the Kullback-Leibler divergence (KL divergence) loss between true labels
|
|
|
|
and predicted probabilities.
|
|
|
|
|
|
|
|
KL divergence loss quantifies dissimilarity between true labels and predicted
|
|
|
|
probabilities. It's often used in training generative models.
|
|
|
|
|
|
|
|
KL = Σ(y_true * ln(y_true / y_pred))
|
|
|
|
|
|
|
|
Reference: https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
|
|
|
|
|
|
|
|
Parameters:
|
|
|
|
- y_true: True class probabilities
|
|
|
|
- y_pred: Predicted class probabilities
|
|
|
|
|
|
|
|
>>> true_labels = np.array([0.2, 0.3, 0.5])
|
|
|
|
>>> predicted_probs = np.array([0.3, 0.3, 0.4])
|
|
|
|
>>> kullback_leibler_divergence(true_labels, predicted_probs)
|
|
|
|
0.030478754035472025
|
|
|
|
>>> true_labels = np.array([0.2, 0.3, 0.5])
|
|
|
|
>>> predicted_probs = np.array([0.3, 0.3, 0.4, 0.5])
|
|
|
|
>>> kullback_leibler_divergence(true_labels, predicted_probs)
|
|
|
|
Traceback (most recent call last):
|
|
|
|
...
|
|
|
|
ValueError: Input arrays must have the same length.
|
|
|
|
"""
|
|
|
|
if len(y_true) != len(y_pred):
|
|
|
|
raise ValueError("Input arrays must have the same length.")
|
|
|
|
|
|
|
|
kl_loss = y_true * np.log(y_true / y_pred)
|
|
|
|
return np.sum(kl_loss)
|
|
|
|
|
|
|
|
|
2023-10-20 21:29:42 +00:00
|
|
|
if __name__ == "__main__":
|
|
|
|
import doctest
|
|
|
|
|
|
|
|
doctest.testmod()
|